洛伦兹信息测量、熵和平均绝对误差的理论和实验比较

T. McMurray, J. Pearce
{"title":"洛伦兹信息测量、熵和平均绝对误差的理论和实验比较","authors":"T. McMurray, J. Pearce","doi":"10.1109/IAI.1994.336688","DOIUrl":null,"url":null,"abstract":"The Lorenz (1905) information measure (LIM) is a function of the observed probability sequence of digital signals, similar to the signal entropy, and is approximately linearly related to the mean absolute error (MAE) in simulations employing uncorrupted and corrupted 2-dimensional Gaussian and magnetic resonance (MR) images. Unlike the MAE, the LIM does not require an uncorrupted reference signal for a distance computation. However, for the particular difference signal case imposed by the definition of the MAE, the LIM is asymptotically bounded by the MAE/signal quantization number ratio. Therefore, in applications where an uncorrupted signal does not exist, and thus, the MAE is undefined, the LIM provides a comparable signal processing performance measure.<<ETX>>","PeriodicalId":438137,"journal":{"name":"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"17 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Theoretical and experimental comparison of the Lorenz information measure, entropy, and the mean absolute error\",\"authors\":\"T. McMurray, J. Pearce\",\"doi\":\"10.1109/IAI.1994.336688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lorenz (1905) information measure (LIM) is a function of the observed probability sequence of digital signals, similar to the signal entropy, and is approximately linearly related to the mean absolute error (MAE) in simulations employing uncorrupted and corrupted 2-dimensional Gaussian and magnetic resonance (MR) images. Unlike the MAE, the LIM does not require an uncorrupted reference signal for a distance computation. However, for the particular difference signal case imposed by the definition of the MAE, the LIM is asymptotically bounded by the MAE/signal quantization number ratio. Therefore, in applications where an uncorrupted signal does not exist, and thus, the MAE is undefined, the LIM provides a comparable signal processing performance measure.<<ETX>>\",\"PeriodicalId\":438137,\"journal\":{\"name\":\"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation\",\"volume\":\"17 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI.1994.336688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.1994.336688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

Lorenz(1905)信息测度(LIM)是观测到的数字信号概率序列的函数,类似于信号熵,并且在使用未损坏和损坏的二维高斯和磁共振(MR)图像的模拟中与平均绝对误差(MAE)近似线性相关。与MAE不同,LIM不需要一个未损坏的参考信号来进行距离计算。然而,对于由MAE定义施加的特殊差分信号情况,LIM是由MAE/信号量化数比渐近有界的。因此,在不存在未损坏信号的应用中,MAE是未定义的,LIM提供了一个可比较的信号处理性能度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical and experimental comparison of the Lorenz information measure, entropy, and the mean absolute error
The Lorenz (1905) information measure (LIM) is a function of the observed probability sequence of digital signals, similar to the signal entropy, and is approximately linearly related to the mean absolute error (MAE) in simulations employing uncorrupted and corrupted 2-dimensional Gaussian and magnetic resonance (MR) images. Unlike the MAE, the LIM does not require an uncorrupted reference signal for a distance computation. However, for the particular difference signal case imposed by the definition of the MAE, the LIM is asymptotically bounded by the MAE/signal quantization number ratio. Therefore, in applications where an uncorrupted signal does not exist, and thus, the MAE is undefined, the LIM provides a comparable signal processing performance measure.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信