{"title":"5G 65nm PD-SOI CMOS 23.2 ~ 28.8 GHz低抖动正交耦合注入锁定数字控制振荡器","authors":"Romane Dumont, M. De matos, A. Cathelin, Y. Deval","doi":"10.1109/RFIC54546.2022.9863081","DOIUrl":null,"url":null,"abstract":"A low-phase-noise mm-W low-power quadrature differentially injection-locked digitally-controlled oscillator (QILDCO) is presented. This work adopts a differential injection to enable a trade-off between phase noise performance and power consumption. Switched-capacitor banks and active devices are integrated inside the inductor loop to reduce the active area. The total active area is 0.109 mm2 including harmonic extractors and buffers (excluding I/O pads). The proposed oscillator is supporting two 5G mm-W bands below 30 GHz with a tuning range of 21.3%. The prototype has been implemented in 65-nm Partially-Depleted SOI (PD-SOI) CMOS process. It achieves best state-of-the-art jitter of 25.6 fs while consuming 22 mW from a 1 V supply voltage.","PeriodicalId":415294,"journal":{"name":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 5G 65-nm PD-SOI CMOS 23.2-to-28.8 GHz Low-Jitter Quadrature-Coupled Injection-Locked Digitally-Controlled Oscillator\",\"authors\":\"Romane Dumont, M. De matos, A. Cathelin, Y. Deval\",\"doi\":\"10.1109/RFIC54546.2022.9863081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-phase-noise mm-W low-power quadrature differentially injection-locked digitally-controlled oscillator (QILDCO) is presented. This work adopts a differential injection to enable a trade-off between phase noise performance and power consumption. Switched-capacitor banks and active devices are integrated inside the inductor loop to reduce the active area. The total active area is 0.109 mm2 including harmonic extractors and buffers (excluding I/O pads). The proposed oscillator is supporting two 5G mm-W bands below 30 GHz with a tuning range of 21.3%. The prototype has been implemented in 65-nm Partially-Depleted SOI (PD-SOI) CMOS process. It achieves best state-of-the-art jitter of 25.6 fs while consuming 22 mW from a 1 V supply voltage.\",\"PeriodicalId\":415294,\"journal\":{\"name\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC54546.2022.9863081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC54546.2022.9863081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-phase-noise mm-W low-power quadrature differentially injection-locked digitally-controlled oscillator (QILDCO) is presented. This work adopts a differential injection to enable a trade-off between phase noise performance and power consumption. Switched-capacitor banks and active devices are integrated inside the inductor loop to reduce the active area. The total active area is 0.109 mm2 including harmonic extractors and buffers (excluding I/O pads). The proposed oscillator is supporting two 5G mm-W bands below 30 GHz with a tuning range of 21.3%. The prototype has been implemented in 65-nm Partially-Depleted SOI (PD-SOI) CMOS process. It achieves best state-of-the-art jitter of 25.6 fs while consuming 22 mW from a 1 V supply voltage.