自由开弦的狄拉克公式

C. Burdik, O. Navrátil
{"title":"自由开弦的狄拉克公式","authors":"C. Burdik, O. Navrátil","doi":"10.2478/V10005-007-0023-X","DOIUrl":null,"url":null,"abstract":"Dirac formulation of open relativistic strings as systems with constraints is made explicitly. Classical theory is given in the standard light-cone and covariant center-of-mass gauges. It is mentioned that the well-known result D = 26 is affected by using the standard quantization of the mutually independent nonphysical boson creation and annihilation operators. It is shown that in the Dirac formulation these operators are not independent in both the gauges. Concepts of Physics, Vol. IV, No. 4 (2007) DOI: 10.2478/v10005-007-0023-x 487 We give some new conditions on these operators and show that the theory is consistent with Poincare algebra in any dimension D. 488 Concepts of Physics, Vol. IV, No. 4 (2007) Dirac Formulation of Free Open String 1 Hamilton description of classical open string We will study the Nambu–Goto [1] free open string in dimension D. We assume the sign convention gμν = diag(−1, 1, . . . , 1), where μ, ν = 0, 1, . . . , D − 1. The string is described by the functions X(τ, σ), where τ ∈ R and σ ∈ 〈0, π〉. The classical string is described by Lagrangian L(X) = −ω ∫ π 0 Ldσ, where ω > 0 is a constant and the Lagrangian density L(τ, σ) is L = √( ẊX ′ )2 − (Ẋ)2(X ′)2 . A dot means partial derivation with respect to τ , a dash with respect to σ, and XY = gμνXY ν = XμY ν . The boundary conditions are X ′ μ(τ, 0) = X ′ μ(τ, π) = 0. In the Hamiltonian formulation we define momenta Pμ(τ, σ) = δL δẊμ(σ) = ω Ẋμ(X ′X ′)−X ′ μ(ẊX ′) √( ẊX ′ )2 − (Ẋ)2(X ′)2 . (1) From (1) we obtain the relations Φ1 = 1 2 ( P 2 + ω ( X ′ )2) = 0 , Φ2 = PX ′ = 0 (2) called constraints. For the Poisson brackets of two functionals F (X,P ) and G(X,P ) we have { F,G } = ∫ π 0 ( δF δXμ(σ) δG δPμ(σ) − δF δPμ(σ) δG δXμ(σ) ) dσ . (3) In particular, the relation { X(σ), P ν(σ′) } = gδ(σ − σ′) is valid. The Hamiltonian of the system with constraints (2) is","PeriodicalId":249199,"journal":{"name":"Old and New Concepts of Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dirac Formulation of Free Open String\",\"authors\":\"C. Burdik, O. Navrátil\",\"doi\":\"10.2478/V10005-007-0023-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dirac formulation of open relativistic strings as systems with constraints is made explicitly. Classical theory is given in the standard light-cone and covariant center-of-mass gauges. It is mentioned that the well-known result D = 26 is affected by using the standard quantization of the mutually independent nonphysical boson creation and annihilation operators. It is shown that in the Dirac formulation these operators are not independent in both the gauges. Concepts of Physics, Vol. IV, No. 4 (2007) DOI: 10.2478/v10005-007-0023-x 487 We give some new conditions on these operators and show that the theory is consistent with Poincare algebra in any dimension D. 488 Concepts of Physics, Vol. IV, No. 4 (2007) Dirac Formulation of Free Open String 1 Hamilton description of classical open string We will study the Nambu–Goto [1] free open string in dimension D. We assume the sign convention gμν = diag(−1, 1, . . . , 1), where μ, ν = 0, 1, . . . , D − 1. The string is described by the functions X(τ, σ), where τ ∈ R and σ ∈ 〈0, π〉. The classical string is described by Lagrangian L(X) = −ω ∫ π 0 Ldσ, where ω > 0 is a constant and the Lagrangian density L(τ, σ) is L = √( ẊX ′ )2 − (Ẋ)2(X ′)2 . A dot means partial derivation with respect to τ , a dash with respect to σ, and XY = gμνXY ν = XμY ν . The boundary conditions are X ′ μ(τ, 0) = X ′ μ(τ, π) = 0. In the Hamiltonian formulation we define momenta Pμ(τ, σ) = δL δẊμ(σ) = ω Ẋμ(X ′X ′)−X ′ μ(ẊX ′) √( ẊX ′ )2 − (Ẋ)2(X ′)2 . (1) From (1) we obtain the relations Φ1 = 1 2 ( P 2 + ω ( X ′ )2) = 0 , Φ2 = PX ′ = 0 (2) called constraints. For the Poisson brackets of two functionals F (X,P ) and G(X,P ) we have { F,G } = ∫ π 0 ( δF δXμ(σ) δG δPμ(σ) − δF δPμ(σ) δG δXμ(σ) ) dσ . (3) In particular, the relation { X(σ), P ν(σ′) } = gδ(σ − σ′) is valid. The Hamiltonian of the system with constraints (2) is\",\"PeriodicalId\":249199,\"journal\":{\"name\":\"Old and New Concepts of Physics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Old and New Concepts of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/V10005-007-0023-X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Old and New Concepts of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/V10005-007-0023-X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

明确地给出了开放相对论弦作为带约束系统的狄拉克公式。给出了标准光锥量规和协变质心量规的经典理论。文中提到,使用相互独立的非物理玻色子产生和湮灭算符的标准量子化会影响众所周知的结果D = 26。结果表明,在狄拉克公式中,这些算符在两个量规中都不是独立的。物理学的概念,第四卷,4号(2007年)DOI: 10.2478 / v10005 - 007 - 0023 x 487我们给一些新条件这些运营商和表明,该理论是一致的庞加莱代数在任何维d . 488年物理学的概念,第四卷,4号(2007)狄拉克制定免费开放弦1汉密尔顿古典开弦的描述我们将研究Nambu-Goto[1]自由开放弦维d我们假设符号惯例gμν=诊断接头(−1 1。, 1),其中μ, ν = 0,1,…, d−1。弦由函数X(τ, σ)描述,其中τ∈R, σ∈< 0,π >。经典弦由拉格朗日L(X) = - ω∫π 0 Ldσ描述,其中ω > 0是一个常数,拉格朗日密度L(τ, σ)为L =√(ẊX ')2−(Ẋ)2(X ')2。点表示对τ的偏导数,破折号表示对σ的偏导数,XY = gμνXY ν = XμY ν。边界条件为X′μ(τ, 0) = X′μ(τ, π) = 0。在哈密顿公式我们定义动量PμL(τ,σ)=δδẊμ(σ)=ωẊμ(X ' X ')−X 'μ(ẊX ')√(ẊX”)2−(Ẋ)2 (X) 2。(1)由(1)得到关系Φ1 = 1 2 (p2 + ω (X ')2) = 0, Φ2 = PX ' = 0(2)称为约束。对于两个泛函F (X,P)和G(X,P)的泊松括号,我们有{F,G} =∫π 0 (δF δXμ(σ) δG δPμ(σ) - δF δPμ(σ) δG δXμ(σ)) dσ。(3)特别是{X(σ),P的关系ν(σ)}=δg(σ−σ”)是有效的。具有约束(2)的系统的哈密顿量为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dirac Formulation of Free Open String
Dirac formulation of open relativistic strings as systems with constraints is made explicitly. Classical theory is given in the standard light-cone and covariant center-of-mass gauges. It is mentioned that the well-known result D = 26 is affected by using the standard quantization of the mutually independent nonphysical boson creation and annihilation operators. It is shown that in the Dirac formulation these operators are not independent in both the gauges. Concepts of Physics, Vol. IV, No. 4 (2007) DOI: 10.2478/v10005-007-0023-x 487 We give some new conditions on these operators and show that the theory is consistent with Poincare algebra in any dimension D. 488 Concepts of Physics, Vol. IV, No. 4 (2007) Dirac Formulation of Free Open String 1 Hamilton description of classical open string We will study the Nambu–Goto [1] free open string in dimension D. We assume the sign convention gμν = diag(−1, 1, . . . , 1), where μ, ν = 0, 1, . . . , D − 1. The string is described by the functions X(τ, σ), where τ ∈ R and σ ∈ 〈0, π〉. The classical string is described by Lagrangian L(X) = −ω ∫ π 0 Ldσ, where ω > 0 is a constant and the Lagrangian density L(τ, σ) is L = √( ẊX ′ )2 − (Ẋ)2(X ′)2 . A dot means partial derivation with respect to τ , a dash with respect to σ, and XY = gμνXY ν = XμY ν . The boundary conditions are X ′ μ(τ, 0) = X ′ μ(τ, π) = 0. In the Hamiltonian formulation we define momenta Pμ(τ, σ) = δL δẊμ(σ) = ω Ẋμ(X ′X ′)−X ′ μ(ẊX ′) √( ẊX ′ )2 − (Ẋ)2(X ′)2 . (1) From (1) we obtain the relations Φ1 = 1 2 ( P 2 + ω ( X ′ )2) = 0 , Φ2 = PX ′ = 0 (2) called constraints. For the Poisson brackets of two functionals F (X,P ) and G(X,P ) we have { F,G } = ∫ π 0 ( δF δXμ(σ) δG δPμ(σ) − δF δPμ(σ) δG δXμ(σ) ) dσ . (3) In particular, the relation { X(σ), P ν(σ′) } = gδ(σ − σ′) is valid. The Hamiltonian of the system with constraints (2) is
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信