基于低秩和稀疏同时分解的钙成像数据鲁棒高效对齐

Junmo Cho, Seungjae Han, Eun-Seo Cho, Kijung Shin, Young-Gyu Yoon
{"title":"基于低秩和稀疏同时分解的钙成像数据鲁棒高效对齐","authors":"Junmo Cho, Seungjae Han, Eun-Seo Cho, Kijung Shin, Young-Gyu Yoon","doi":"10.1109/WACV56688.2023.00198","DOIUrl":null,"url":null,"abstract":"Accurate alignment of calcium imaging data, which is critical for the extraction of neuronal activity signals, is often hindered by the image noise and the neuronal activity itself. To address the problem, we propose an algorithm named REALS for robust and efficient batch image alignment through simultaneous transformation and low rank and sparse decomposition. REALS is constructed upon our finding that the low rank subspace can be recovered via linear projection, which allows us to perform simultaneous image alignment and decomposition with gradient-based updates. REALS achieves orders-of-magnitude improvement in terms of accuracy and speed compared to the state-of-the-art robust image alignment algorithms.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust and Efficient Alignment of Calcium Imaging Data through Simultaneous Low Rank and Sparse Decomposition\",\"authors\":\"Junmo Cho, Seungjae Han, Eun-Seo Cho, Kijung Shin, Young-Gyu Yoon\",\"doi\":\"10.1109/WACV56688.2023.00198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate alignment of calcium imaging data, which is critical for the extraction of neuronal activity signals, is often hindered by the image noise and the neuronal activity itself. To address the problem, we propose an algorithm named REALS for robust and efficient batch image alignment through simultaneous transformation and low rank and sparse decomposition. REALS is constructed upon our finding that the low rank subspace can be recovered via linear projection, which allows us to perform simultaneous image alignment and decomposition with gradient-based updates. REALS achieves orders-of-magnitude improvement in terms of accuracy and speed compared to the state-of-the-art robust image alignment algorithms.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钙离子成像数据的精确对齐是提取神经元活动信号的关键,但常常受到图像噪声和神经元活动本身的阻碍。为了解决这个问题,我们提出了一种名为REALS的算法,通过同时变换和低秩稀疏分解来实现鲁棒高效的批量图像对齐。REALS是在我们发现低秩子空间可以通过线性投影恢复的基础上构建的,这允许我们同时使用基于梯度的更新执行图像对齐和分解。与最先进的鲁棒图像对齐算法相比,REALS在精度和速度方面实现了数量级的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust and Efficient Alignment of Calcium Imaging Data through Simultaneous Low Rank and Sparse Decomposition
Accurate alignment of calcium imaging data, which is critical for the extraction of neuronal activity signals, is often hindered by the image noise and the neuronal activity itself. To address the problem, we propose an algorithm named REALS for robust and efficient batch image alignment through simultaneous transformation and low rank and sparse decomposition. REALS is constructed upon our finding that the low rank subspace can be recovered via linear projection, which allows us to perform simultaneous image alignment and decomposition with gradient-based updates. REALS achieves orders-of-magnitude improvement in terms of accuracy and speed compared to the state-of-the-art robust image alignment algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信