{"title":"基于增强关联规则的文本分类","authors":"Yongwook Yoon, G. G. Lee","doi":"10.1109/ICSC.2008.70","DOIUrl":null,"url":null,"abstract":"Associative classification is a novel and powerful method originating from association rule mining. In the previous studies, a relatively small number of high-quality association rules were used in the prediction. We propose a new approach in which a large number of association rules are generated. Then, the rules are filtered using a new method which is equivalent to a deterministic Boosting algorithm. Through this equivalence, our approach effectively adapts to large-scale classification tasks such as text categorization. Experiments with various text collections show that our method achieves one of the best prediction performance compared with the state-of-the-arts of this field.","PeriodicalId":102805,"journal":{"name":"2008 IEEE International Conference on Semantic Computing","volume":"126 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Text Categorization Based on Boosting Association Rules\",\"authors\":\"Yongwook Yoon, G. G. Lee\",\"doi\":\"10.1109/ICSC.2008.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Associative classification is a novel and powerful method originating from association rule mining. In the previous studies, a relatively small number of high-quality association rules were used in the prediction. We propose a new approach in which a large number of association rules are generated. Then, the rules are filtered using a new method which is equivalent to a deterministic Boosting algorithm. Through this equivalence, our approach effectively adapts to large-scale classification tasks such as text categorization. Experiments with various text collections show that our method achieves one of the best prediction performance compared with the state-of-the-arts of this field.\",\"PeriodicalId\":102805,\"journal\":{\"name\":\"2008 IEEE International Conference on Semantic Computing\",\"volume\":\"126 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2008.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2008.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Text Categorization Based on Boosting Association Rules
Associative classification is a novel and powerful method originating from association rule mining. In the previous studies, a relatively small number of high-quality association rules were used in the prediction. We propose a new approach in which a large number of association rules are generated. Then, the rules are filtered using a new method which is equivalent to a deterministic Boosting algorithm. Through this equivalence, our approach effectively adapts to large-scale classification tasks such as text categorization. Experiments with various text collections show that our method achieves one of the best prediction performance compared with the state-of-the-arts of this field.