使用带文本注释的图查询RDF数据

Lushan Han, Timothy W. Finin, A. Joshi, D. Cheng
{"title":"使用带文本注释的图查询RDF数据","authors":"Lushan Han, Timothy W. Finin, A. Joshi, D. Cheng","doi":"10.1145/2791347.2791381","DOIUrl":null,"url":null,"abstract":"Scientists and casual users need better ways to query RDF databases or Linked Open Data. Using the SPARQL query language requires not only mastering its syntax and semantics but also understanding the RDF data model, the ontology used, and URIs for entities of interest. Natural language query systems are a powerful approach, but current techniques are brittle in addressing the ambiguity and complexity of natural language and require expensive labor to supply the extensive domain knowledge they need. We introduce a compromise in which users give a graphical \"skeleton\" for a query and annotates it with freely chosen words, phrases and entity names. We describe a framework for interpreting these \"schema-agnostic queries\" over open domain RDF data that automatically translates them to SPARQL queries. The framework uses semantic textual similarity to find mapping candidates and uses statistical approaches to learn domain knowledge for disambiguation, thus avoiding expensive human efforts required by natural language interface systems. We demonstrate the feasibility of the approach with an implementation that performs well in an evaluation on DBpedia data.","PeriodicalId":225179,"journal":{"name":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","volume":"519 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Querying RDF data with text annotated graphs\",\"authors\":\"Lushan Han, Timothy W. Finin, A. Joshi, D. Cheng\",\"doi\":\"10.1145/2791347.2791381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientists and casual users need better ways to query RDF databases or Linked Open Data. Using the SPARQL query language requires not only mastering its syntax and semantics but also understanding the RDF data model, the ontology used, and URIs for entities of interest. Natural language query systems are a powerful approach, but current techniques are brittle in addressing the ambiguity and complexity of natural language and require expensive labor to supply the extensive domain knowledge they need. We introduce a compromise in which users give a graphical \\\"skeleton\\\" for a query and annotates it with freely chosen words, phrases and entity names. We describe a framework for interpreting these \\\"schema-agnostic queries\\\" over open domain RDF data that automatically translates them to SPARQL queries. The framework uses semantic textual similarity to find mapping candidates and uses statistical approaches to learn domain knowledge for disambiguation, thus avoiding expensive human efforts required by natural language interface systems. We demonstrate the feasibility of the approach with an implementation that performs well in an evaluation on DBpedia data.\",\"PeriodicalId\":225179,\"journal\":{\"name\":\"Proceedings of the 27th International Conference on Scientific and Statistical Database Management\",\"volume\":\"519 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2791347.2791381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2791347.2791381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

科学家和普通用户需要更好的方法来查询RDF数据库或链接开放数据。使用SPARQL查询语言不仅需要掌握其语法和语义,还需要理解RDF数据模型、使用的本体和感兴趣实体的uri。自然语言查询系统是一种强大的方法,但目前的技术在处理自然语言的模糊性和复杂性方面很脆弱,并且需要昂贵的人工来提供所需的广泛领域知识。我们引入了一种折衷方案,即用户为查询提供一个图形化的“骨架”,并用自由选择的单词、短语和实体名称对其进行注释。我们描述了一个框架,用于在开放域RDF数据上解释这些“模式无关查询”,并自动将它们转换为SPARQL查询。该框架使用语义文本相似度来寻找映射候选者,并使用统计方法来学习领域知识以消除歧义,从而避免了自然语言接口系统所需的昂贵人力。我们用一个在DBpedia数据评估中表现良好的实现来证明该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Querying RDF data with text annotated graphs
Scientists and casual users need better ways to query RDF databases or Linked Open Data. Using the SPARQL query language requires not only mastering its syntax and semantics but also understanding the RDF data model, the ontology used, and URIs for entities of interest. Natural language query systems are a powerful approach, but current techniques are brittle in addressing the ambiguity and complexity of natural language and require expensive labor to supply the extensive domain knowledge they need. We introduce a compromise in which users give a graphical "skeleton" for a query and annotates it with freely chosen words, phrases and entity names. We describe a framework for interpreting these "schema-agnostic queries" over open domain RDF data that automatically translates them to SPARQL queries. The framework uses semantic textual similarity to find mapping candidates and uses statistical approaches to learn domain knowledge for disambiguation, thus avoiding expensive human efforts required by natural language interface systems. We demonstrate the feasibility of the approach with an implementation that performs well in an evaluation on DBpedia data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信