预测振荡脑电分量揭示了运动性能指标的共性

M. Tangermann, J. Reis, A. Meinel
{"title":"预测振荡脑电分量揭示了运动性能指标的共性","authors":"M. Tangermann, J. Reis, A. Meinel","doi":"10.5220/0005663100320038","DOIUrl":null,"url":null,"abstract":"The power of oscillatory components of the electroencephalogram (EEG) can be predictive for the single-trial performance score of an upcoming task. State-of-the-art machine learning methods allow to extract such predictive subspace components even from noisy multichannel EEG recordings. In the context of an isometric hand motor rehabilitation task, we analyse EEG data of n=20 normally aged subjects. Predictive oscillatory EEG subspaces were derived with a spatial filtering method (source power comodulation, SPoC), and the transfer of these subspaces between five performance metrics but within data of single subjects was investigated. Findings suggest, that on the grand average of 20 subjects, informative SPoC subspace components were extracted, which could be shared between a set of three metrics describing the duration of subtasks and jerk characteristics of the force trajectories. Transfer to any other of the remaining four metrics was not possible above chance level for a metric describing the reaction time and a metric assessing the length of the force trajectory. Furthermore we show, that these transfer results are in line with the structure of cross-correlations between the performance metrics.","PeriodicalId":167011,"journal":{"name":"International Congress on Neurotechnology, Electronics and Informatics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Commonalities of Motor Performance Metrics are Revealed by Predictive Oscillatory EEG Components\",\"authors\":\"M. Tangermann, J. Reis, A. Meinel\",\"doi\":\"10.5220/0005663100320038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power of oscillatory components of the electroencephalogram (EEG) can be predictive for the single-trial performance score of an upcoming task. State-of-the-art machine learning methods allow to extract such predictive subspace components even from noisy multichannel EEG recordings. In the context of an isometric hand motor rehabilitation task, we analyse EEG data of n=20 normally aged subjects. Predictive oscillatory EEG subspaces were derived with a spatial filtering method (source power comodulation, SPoC), and the transfer of these subspaces between five performance metrics but within data of single subjects was investigated. Findings suggest, that on the grand average of 20 subjects, informative SPoC subspace components were extracted, which could be shared between a set of three metrics describing the duration of subtasks and jerk characteristics of the force trajectories. Transfer to any other of the remaining four metrics was not possible above chance level for a metric describing the reaction time and a metric assessing the length of the force trajectory. Furthermore we show, that these transfer results are in line with the structure of cross-correlations between the performance metrics.\",\"PeriodicalId\":167011,\"journal\":{\"name\":\"International Congress on Neurotechnology, Electronics and Informatics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Congress on Neurotechnology, Electronics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005663100320038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Neurotechnology, Electronics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005663100320038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

脑电图(EEG)振荡分量的功率可以预测即将到来的任务的单次试验表现得分。最先进的机器学习方法甚至可以从嘈杂的多通道脑电图记录中提取这种预测子空间成分。在等长手部运动康复任务的背景下,我们分析了n=20名正常年龄受试者的脑电图数据。采用空间滤波方法(源功率调制,SPoC)推导出预测振荡脑电图子空间,并研究了这些子空间在5个性能指标之间但在单个受试者数据内的转移。研究结果表明,在20个被试的总体平均值上,我们提取了信息丰富的SPoC子空间分量,这些分量可以在描述子任务持续时间和力轨迹的抽搐特征的一组三个指标之间共享。对于描述反应时间的指标和评估力轨迹长度的指标来说,转移到其余四个指标中的任何一个都是不可能的。此外,我们表明,这些转移结果符合性能指标之间相互关联的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commonalities of Motor Performance Metrics are Revealed by Predictive Oscillatory EEG Components
The power of oscillatory components of the electroencephalogram (EEG) can be predictive for the single-trial performance score of an upcoming task. State-of-the-art machine learning methods allow to extract such predictive subspace components even from noisy multichannel EEG recordings. In the context of an isometric hand motor rehabilitation task, we analyse EEG data of n=20 normally aged subjects. Predictive oscillatory EEG subspaces were derived with a spatial filtering method (source power comodulation, SPoC), and the transfer of these subspaces between five performance metrics but within data of single subjects was investigated. Findings suggest, that on the grand average of 20 subjects, informative SPoC subspace components were extracted, which could be shared between a set of three metrics describing the duration of subtasks and jerk characteristics of the force trajectories. Transfer to any other of the remaining four metrics was not possible above chance level for a metric describing the reaction time and a metric assessing the length of the force trajectory. Furthermore we show, that these transfer results are in line with the structure of cross-correlations between the performance metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信