{"title":"基于支持向量机的人体运动检测","authors":"J. Grahn, H. Kjellstromg","doi":"10.1109/VSPETS.2005.1570920","DOIUrl":null,"url":null,"abstract":"This paper presents a method for detection of humans in video. Detection is here formulated as the problem of classifying the image patterns in a range of windows of different size in a video frame as \"human\" or \"non-human\". Computational efficiency is of core importance, which leads us to utilize fast methods for image preprocessing and classification. Linear spatio-temporal difference filters are used to represent motion information in the image. Patterns of spatio-temporal pixel difference is classified using SVM, a classification method proven efficient for problems with high dimensionality and highly non-linear feature spaces. Furthermore, a cascade architecture is employed, to make use of the fact that most windows are easy to classify, while a few are difficult. The detection method shows promising results when tested on images from street scenes with humans of varying sizes and clothing.","PeriodicalId":435841,"journal":{"name":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using SVM for Efficient Detection of Human Motion\",\"authors\":\"J. Grahn, H. Kjellstromg\",\"doi\":\"10.1109/VSPETS.2005.1570920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for detection of humans in video. Detection is here formulated as the problem of classifying the image patterns in a range of windows of different size in a video frame as \\\"human\\\" or \\\"non-human\\\". Computational efficiency is of core importance, which leads us to utilize fast methods for image preprocessing and classification. Linear spatio-temporal difference filters are used to represent motion information in the image. Patterns of spatio-temporal pixel difference is classified using SVM, a classification method proven efficient for problems with high dimensionality and highly non-linear feature spaces. Furthermore, a cascade architecture is employed, to make use of the fact that most windows are easy to classify, while a few are difficult. The detection method shows promising results when tested on images from street scenes with humans of varying sizes and clothing.\",\"PeriodicalId\":435841,\"journal\":{\"name\":\"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSPETS.2005.1570920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSPETS.2005.1570920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a method for detection of humans in video. Detection is here formulated as the problem of classifying the image patterns in a range of windows of different size in a video frame as "human" or "non-human". Computational efficiency is of core importance, which leads us to utilize fast methods for image preprocessing and classification. Linear spatio-temporal difference filters are used to represent motion information in the image. Patterns of spatio-temporal pixel difference is classified using SVM, a classification method proven efficient for problems with high dimensionality and highly non-linear feature spaces. Furthermore, a cascade architecture is employed, to make use of the fact that most windows are easy to classify, while a few are difficult. The detection method shows promising results when tested on images from street scenes with humans of varying sizes and clothing.