使用测地线路径对平面形状进行几何分析

E. Klassen, A. Srivastava
{"title":"使用测地线路径对平面形状进行几何分析","authors":"E. Klassen, A. Srivastava","doi":"10.1109/ACSSC.2002.1197226","DOIUrl":null,"url":null,"abstract":"We propose a differential geometric representation of planar shapes using \"direction\" functions of their boundaries. Each shape becomes an element of a constrained function space, an infinite-dimensional manifold, and pairwise differences between are quantified using the lengths of geodesics connecting them on this space. A gradient-based shooting method is used for finding geodesics between any two shapes. Some applications of this shape metric are illustrated including clustering of objects based on their shapes and computation of intrinsic mean shapes.","PeriodicalId":284950,"journal":{"name":"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.","volume":"417 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Geometric analysis of planar shapes using geodesic paths\",\"authors\":\"E. Klassen, A. Srivastava\",\"doi\":\"10.1109/ACSSC.2002.1197226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a differential geometric representation of planar shapes using \\\"direction\\\" functions of their boundaries. Each shape becomes an element of a constrained function space, an infinite-dimensional manifold, and pairwise differences between are quantified using the lengths of geodesics connecting them on this space. A gradient-based shooting method is used for finding geodesics between any two shapes. Some applications of this shape metric are illustrated including clustering of objects based on their shapes and computation of intrinsic mean shapes.\",\"PeriodicalId\":284950,\"journal\":{\"name\":\"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.\",\"volume\":\"417 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2002.1197226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2002.1197226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一种平面形状的微分几何表示,使用其边界的“方向”函数。每个形状都成为约束函数空间的一个元素,一个无限维流形,它们之间的成对差异是通过在这个空间上连接它们的测地线的长度来量化的。基于梯度的射击方法用于寻找任意两个形状之间的测地线。举例说明了该形状度量的一些应用,包括基于物体形状的聚类和内禀平均形状的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric analysis of planar shapes using geodesic paths
We propose a differential geometric representation of planar shapes using "direction" functions of their boundaries. Each shape becomes an element of a constrained function space, an infinite-dimensional manifold, and pairwise differences between are quantified using the lengths of geodesics connecting them on this space. A gradient-based shooting method is used for finding geodesics between any two shapes. Some applications of this shape metric are illustrated including clustering of objects based on their shapes and computation of intrinsic mean shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信