GPU上的稀疏矩阵求解器:共轭梯度和多重网格

J. Bolz, I. Farmer, E. Grinspun, P. Schröder
{"title":"GPU上的稀疏矩阵求解器:共轭梯度和多重网格","authors":"J. Bolz, I. Farmer, E. Grinspun, P. Schröder","doi":"10.1145/1201775.882364","DOIUrl":null,"url":null,"abstract":"Many computer graphics applications require high-intensity numerical simulation. We show that such computations can be performed efficiently on the GPU, which we regard as a full function streaming processor with high floating-point performance. We implemented two basic, broadly useful, computational kernels: a sparse matrix conjugate gradient solver and a regular-grid multigrid solver. Real time applications ranging from mesh smoothing and parameterization to fluid solvers and solid mechanics can greatly benefit from these, evidence our example applications of geometric flow and fluid simulation running on NVIDIA's GeForce FX.","PeriodicalId":314969,"journal":{"name":"ACM SIGGRAPH 2003 Papers","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"683","resultStr":"{\"title\":\"Sparse matrix solvers on the GPU: conjugate gradients and multigrid\",\"authors\":\"J. Bolz, I. Farmer, E. Grinspun, P. Schröder\",\"doi\":\"10.1145/1201775.882364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many computer graphics applications require high-intensity numerical simulation. We show that such computations can be performed efficiently on the GPU, which we regard as a full function streaming processor with high floating-point performance. We implemented two basic, broadly useful, computational kernels: a sparse matrix conjugate gradient solver and a regular-grid multigrid solver. Real time applications ranging from mesh smoothing and parameterization to fluid solvers and solid mechanics can greatly benefit from these, evidence our example applications of geometric flow and fluid simulation running on NVIDIA's GeForce FX.\",\"PeriodicalId\":314969,\"journal\":{\"name\":\"ACM SIGGRAPH 2003 Papers\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"683\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2003 Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1201775.882364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2003 Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1201775.882364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 683

摘要

许多计算机图形学应用需要高强度的数值模拟。我们证明了这些计算可以在GPU上有效地执行,我们认为GPU是一个具有高浮点性能的全功能流处理器。我们实现了两个基本的、广泛使用的计算核:稀疏矩阵共轭梯度求解器和规则网格多网格求解器。从网格平滑和参数化到流体求解器和固体力学的实时应用程序都可以从这些特性中受益匪浅,我们在NVIDIA的GeForce FX上运行的几何流和流体模拟示例应用程序就是证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse matrix solvers on the GPU: conjugate gradients and multigrid
Many computer graphics applications require high-intensity numerical simulation. We show that such computations can be performed efficiently on the GPU, which we regard as a full function streaming processor with high floating-point performance. We implemented two basic, broadly useful, computational kernels: a sparse matrix conjugate gradient solver and a regular-grid multigrid solver. Real time applications ranging from mesh smoothing and parameterization to fluid solvers and solid mechanics can greatly benefit from these, evidence our example applications of geometric flow and fluid simulation running on NVIDIA's GeForce FX.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信