基于指数底层分布的最优计算预算分配

Fei Gao, Siyang Gao
{"title":"基于指数底层分布的最优计算预算分配","authors":"Fei Gao, Siyang Gao","doi":"10.5555/3042094.3042191","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the simulation budget allocation problem to maximize the probability of selecting the best simulated design in ordinal optimization. This problem has been studied extensively on the basis of the normal distribution. In this research, we consider the budget allocation problem when the underlying distribution is exponential. This case is widely seen in simulation practice. We derive an asymptotic closed-form allocation rule which is easy to compute and implement in practice, and provide some useful insights for the optimal budget allocation problem with exponential underlying distribution.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimal computing budget allocation with exponential underlying distribution\",\"authors\":\"Fei Gao, Siyang Gao\",\"doi\":\"10.5555/3042094.3042191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the simulation budget allocation problem to maximize the probability of selecting the best simulated design in ordinal optimization. This problem has been studied extensively on the basis of the normal distribution. In this research, we consider the budget allocation problem when the underlying distribution is exponential. This case is widely seen in simulation practice. We derive an asymptotic closed-form allocation rule which is easy to compute and implement in practice, and provide some useful insights for the optimal budget allocation problem with exponential underlying distribution.\",\"PeriodicalId\":367269,\"journal\":{\"name\":\"2016 Winter Simulation Conference (WSC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/3042094.3042191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/3042094.3042191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文考虑了在有序优化中选择最佳仿真设计的概率最大化的仿真预算分配问题。这个问题在正态分布的基础上得到了广泛的研究。本文研究了当基础分布为指数分布时的预算分配问题。这种情况在模拟实践中普遍存在。我们推导出一种易于计算和实现的渐近封闭分配规则,并为具有指数底层分布的最优预算分配问题提供了一些有用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal computing budget allocation with exponential underlying distribution
In this paper, we consider the simulation budget allocation problem to maximize the probability of selecting the best simulated design in ordinal optimization. This problem has been studied extensively on the basis of the normal distribution. In this research, we consider the budget allocation problem when the underlying distribution is exponential. This case is widely seen in simulation practice. We derive an asymptotic closed-form allocation rule which is easy to compute and implement in practice, and provide some useful insights for the optimal budget allocation problem with exponential underlying distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信