并行代数递归多层求解器pARMS的CPU/GPU混合方法

Aygul Jamal, M. Baboulin, Amal Khabou, M. Sosonkina
{"title":"并行代数递归多层求解器pARMS的CPU/GPU混合方法","authors":"Aygul Jamal, M. Baboulin, Amal Khabou, M. Sosonkina","doi":"10.1109/SYNASC.2016.069","DOIUrl":null,"url":null,"abstract":"We illustrate how the distributed parallel Algebraic Recursive Multilevel Solver based on MPI can be adapted for heterogeneous CPU/GPU architectures. The tasks performed on the GPU are related to the preconditioning of each part of the distributed matrix (local preconditioning) which is handled in the distributed version by each MPI process. The solving step remains on the CPU. In our implementation, the local preconditioning can be based either on the randomization of the last Schur complement system in the multilevel recursive process, or on an Incomplete LU factorization from the MAGMA library. Numerical experiments show that a promising performance improvement can be obtained using either randomized multilevel recursive preconditioning or Incomplete LU preconditioning for large enough matrices. Each preconditioning method ensures a good performance for a given set of matrices.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS\",\"authors\":\"Aygul Jamal, M. Baboulin, Amal Khabou, M. Sosonkina\",\"doi\":\"10.1109/SYNASC.2016.069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We illustrate how the distributed parallel Algebraic Recursive Multilevel Solver based on MPI can be adapted for heterogeneous CPU/GPU architectures. The tasks performed on the GPU are related to the preconditioning of each part of the distributed matrix (local preconditioning) which is handled in the distributed version by each MPI process. The solving step remains on the CPU. In our implementation, the local preconditioning can be based either on the randomization of the last Schur complement system in the multilevel recursive process, or on an Incomplete LU factorization from the MAGMA library. Numerical experiments show that a promising performance improvement can be obtained using either randomized multilevel recursive preconditioning or Incomplete LU preconditioning for large enough matrices. Each preconditioning method ensures a good performance for a given set of matrices.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们说明了基于MPI的分布式并行代数递归多层求解器如何适用于异构CPU/GPU架构。在GPU上执行的任务与分布式矩阵的每个部分的预处理(局部预处理)有关,这些预处理由每个MPI进程在分布式版本中处理。求解步骤仍然在CPU上。在我们的实现中,局部预处理既可以基于多级递归过程中最后一个Schur补系统的随机化,也可以基于MAGMA库中的不完全LU分解。数值实验表明,对于足够大的矩阵,采用随机多级递归预处理或不完全LU预处理都能获得较好的性能改善。每种预处理方法都保证了给定矩阵集的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS
We illustrate how the distributed parallel Algebraic Recursive Multilevel Solver based on MPI can be adapted for heterogeneous CPU/GPU architectures. The tasks performed on the GPU are related to the preconditioning of each part of the distributed matrix (local preconditioning) which is handled in the distributed version by each MPI process. The solving step remains on the CPU. In our implementation, the local preconditioning can be based either on the randomization of the last Schur complement system in the multilevel recursive process, or on an Incomplete LU factorization from the MAGMA library. Numerical experiments show that a promising performance improvement can be obtained using either randomized multilevel recursive preconditioning or Incomplete LU preconditioning for large enough matrices. Each preconditioning method ensures a good performance for a given set of matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信