面向2d到3d单视图重建的资源意识高性能模型

Suraj Bidnur, Dhruv Srikanth, Sanjeev Gurugopinath
{"title":"面向2d到3d单视图重建的资源意识高性能模型","authors":"Suraj Bidnur, Dhruv Srikanth, Sanjeev Gurugopinath","doi":"10.1109/TENCON54134.2021.9707193","DOIUrl":null,"url":null,"abstract":"We propose two transfer learning-based deep neural network architectures for 2D-to-3D single-view image reconstruction, with an emphasis on low computational resources for training and high reconstruction performance. The proposed models, namely AE-Dense and 3D-SkipNet use DenseNet and ResNet architectures in the encoder, with additional skip connections. Through extensive experimental study on the 3D ShapeNets database, we show that the proposed models outperform state-of-the-art models, namely Pix2Vox and 3D-R2N2, in terms of intersection over union (IoU) metric. In particular, the AE-Dense offers the highest IoU, while the 3D-SkipNet yields a significant reduction in memory and training time, compared to Pix2Vox and 3D-R2N2.","PeriodicalId":405859,"journal":{"name":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource-Conscious High-Performance Models for 2D-to-3D Single-View Reconstruction\",\"authors\":\"Suraj Bidnur, Dhruv Srikanth, Sanjeev Gurugopinath\",\"doi\":\"10.1109/TENCON54134.2021.9707193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose two transfer learning-based deep neural network architectures for 2D-to-3D single-view image reconstruction, with an emphasis on low computational resources for training and high reconstruction performance. The proposed models, namely AE-Dense and 3D-SkipNet use DenseNet and ResNet architectures in the encoder, with additional skip connections. Through extensive experimental study on the 3D ShapeNets database, we show that the proposed models outperform state-of-the-art models, namely Pix2Vox and 3D-R2N2, in terms of intersection over union (IoU) metric. In particular, the AE-Dense offers the highest IoU, while the 3D-SkipNet yields a significant reduction in memory and training time, compared to Pix2Vox and 3D-R2N2.\",\"PeriodicalId\":405859,\"journal\":{\"name\":\"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)\",\"volume\":\"352 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON54134.2021.9707193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON54134.2021.9707193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了两种基于迁移学习的深度神经网络架构,用于2d到3d的单视图图像重建,重点是低计算资源的训练和高重建性能。提出的模型,即AE-Dense和3D-SkipNet,在编码器中使用DenseNet和ResNet架构,并带有额外的跳过连接。通过对3D ShapeNets数据库的广泛实验研究,我们表明,所提出的模型在相交/联合(IoU)度量方面优于最先进的模型,即Pix2Vox和3D- r2n2。特别是,AE-Dense提供了最高的IoU,而3D-SkipNet与Pix2Vox和3D-R2N2相比,在内存和训练时间上显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource-Conscious High-Performance Models for 2D-to-3D Single-View Reconstruction
We propose two transfer learning-based deep neural network architectures for 2D-to-3D single-view image reconstruction, with an emphasis on low computational resources for training and high reconstruction performance. The proposed models, namely AE-Dense and 3D-SkipNet use DenseNet and ResNet architectures in the encoder, with additional skip connections. Through extensive experimental study on the 3D ShapeNets database, we show that the proposed models outperform state-of-the-art models, namely Pix2Vox and 3D-R2N2, in terms of intersection over union (IoU) metric. In particular, the AE-Dense offers the highest IoU, while the 3D-SkipNet yields a significant reduction in memory and training time, compared to Pix2Vox and 3D-R2N2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信