{"title":"基于MULTOS物联网信任锚的Kyber性能评估与优化","authors":"K. Mayes","doi":"10.1109/SmartIoT49966.2020.00010","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) may be considered as a distributed, critical infrastructure, consisting of billions of devices, many of which having limited processing capability. However, the security of IoT must not be compromised by these limitations, and defenses need to protect against today's threats, and those predicted for the future. This requires protection against implementation attacks, as well as the ability to load, replace and run, best-practice cryptographic algorithms. Post-Quantum cryptographic algorithms are attracting great interest, and NIST standardization has a competition to find the best. Prior research demonstrated that a Learning With Errors candidate algorithm could be implemented on a smart card chip, however this was a low-level implementation, and not representative of loading the algorithm onto a secured IoT chip platform. In this paper we present analysis from a practical implementation of the Kyber768 CPAPKE public key encryption component on a MULTOS IoT Trust-Anchor chip. The investigation considered memory and speed requirements, and optimizations, and compared the NTT transform version of Kyber, presented in Round 1 of the NIST competition, with the Kroenecker multiplier technique that exploits a hardware crypto-coprocessor. The work began with a generic multi-round multiplier approach, which was then improved using a novel modification of the input data, allowing a built-in modular multiply function to be used, significantly increasing the speed of a multiplication round, and doubling the useable size of the hardware multiplier.","PeriodicalId":399187,"journal":{"name":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Evaluation and Optimisation for Kyber on the MULTOS IoT Trust-Anchor\",\"authors\":\"K. Mayes\",\"doi\":\"10.1109/SmartIoT49966.2020.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) may be considered as a distributed, critical infrastructure, consisting of billions of devices, many of which having limited processing capability. However, the security of IoT must not be compromised by these limitations, and defenses need to protect against today's threats, and those predicted for the future. This requires protection against implementation attacks, as well as the ability to load, replace and run, best-practice cryptographic algorithms. Post-Quantum cryptographic algorithms are attracting great interest, and NIST standardization has a competition to find the best. Prior research demonstrated that a Learning With Errors candidate algorithm could be implemented on a smart card chip, however this was a low-level implementation, and not representative of loading the algorithm onto a secured IoT chip platform. In this paper we present analysis from a practical implementation of the Kyber768 CPAPKE public key encryption component on a MULTOS IoT Trust-Anchor chip. The investigation considered memory and speed requirements, and optimizations, and compared the NTT transform version of Kyber, presented in Round 1 of the NIST competition, with the Kroenecker multiplier technique that exploits a hardware crypto-coprocessor. The work began with a generic multi-round multiplier approach, which was then improved using a novel modification of the input data, allowing a built-in modular multiply function to be used, significantly increasing the speed of a multiplication round, and doubling the useable size of the hardware multiplier.\",\"PeriodicalId\":399187,\"journal\":{\"name\":\"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT49966.2020.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT49966.2020.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Evaluation and Optimisation for Kyber on the MULTOS IoT Trust-Anchor
The Internet of Things (IoT) may be considered as a distributed, critical infrastructure, consisting of billions of devices, many of which having limited processing capability. However, the security of IoT must not be compromised by these limitations, and defenses need to protect against today's threats, and those predicted for the future. This requires protection against implementation attacks, as well as the ability to load, replace and run, best-practice cryptographic algorithms. Post-Quantum cryptographic algorithms are attracting great interest, and NIST standardization has a competition to find the best. Prior research demonstrated that a Learning With Errors candidate algorithm could be implemented on a smart card chip, however this was a low-level implementation, and not representative of loading the algorithm onto a secured IoT chip platform. In this paper we present analysis from a practical implementation of the Kyber768 CPAPKE public key encryption component on a MULTOS IoT Trust-Anchor chip. The investigation considered memory and speed requirements, and optimizations, and compared the NTT transform version of Kyber, presented in Round 1 of the NIST competition, with the Kroenecker multiplier technique that exploits a hardware crypto-coprocessor. The work began with a generic multi-round multiplier approach, which was then improved using a novel modification of the input data, allowing a built-in modular multiply function to be used, significantly increasing the speed of a multiplication round, and doubling the useable size of the hardware multiplier.