令人放松的完美:哪些图表“几乎”完美?

Annegret K. Wagler
{"title":"令人放松的完美:哪些图表“几乎”完美?","authors":"Annegret K. Wagler","doi":"10.1137/1.9780898718805.ch7","DOIUrl":null,"url":null,"abstract":"For all perfect graphs, the stable set polytope STAB$(G)$ coincides with the fractional stable set polytope QSTAB$(G)$, whereas STAB$(G) \\subset$ QSTAB$(G)$ holds iff $G$ is imperfect. Padberg asked in the early seventies for ``almost'' perfect graphs. He characterized those graphs for which the difference between STAB$(G)$ and QSTAB$(G)$ is smallest possible. We develop this idea further and define three polytopes between STAB$(G)$ and QSTAB$(G)$ by allowing certain sets of cutting planes only to cut off all the fractional vertices of QSTAB$(G)$. The difference between QSTAB$(G)$ and the largest of the three polytopes coinciding with STAB$(G)$ gives some information on the stage of imperfectness of the graph~$G$. We obtain a nested collection of three superclasses of perfect graphs and survey which graphs are known to belong to one of those three superclasses. This answers the question: which graphs are ``almost'' perfect?","PeriodicalId":416196,"journal":{"name":"The Sharpest Cut","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Relaxing Perfectness: Which Graphs Are \\\"Almost\\\" Perfect?\",\"authors\":\"Annegret K. Wagler\",\"doi\":\"10.1137/1.9780898718805.ch7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For all perfect graphs, the stable set polytope STAB$(G)$ coincides with the fractional stable set polytope QSTAB$(G)$, whereas STAB$(G) \\\\subset$ QSTAB$(G)$ holds iff $G$ is imperfect. Padberg asked in the early seventies for ``almost'' perfect graphs. He characterized those graphs for which the difference between STAB$(G)$ and QSTAB$(G)$ is smallest possible. We develop this idea further and define three polytopes between STAB$(G)$ and QSTAB$(G)$ by allowing certain sets of cutting planes only to cut off all the fractional vertices of QSTAB$(G)$. The difference between QSTAB$(G)$ and the largest of the three polytopes coinciding with STAB$(G)$ gives some information on the stage of imperfectness of the graph~$G$. We obtain a nested collection of three superclasses of perfect graphs and survey which graphs are known to belong to one of those three superclasses. This answers the question: which graphs are ``almost'' perfect?\",\"PeriodicalId\":416196,\"journal\":{\"name\":\"The Sharpest Cut\",\"volume\":\"08 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Sharpest Cut\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9780898718805.ch7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sharpest Cut","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9780898718805.ch7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

对于所有完美图,稳定集多面体STAB$(G)$与分数稳定集多面体QSTAB$(G)$重合,而当$G$不完美时,STAB$(G) \子集$ QSTAB$(G)$成立。70年代初,帕德伯格要求绘制“近乎”完美的图。他描述了那些STAB$(G)$和QSTAB$(G)$之间的差异尽可能小的图。我们进一步发展了这一思想,并在STAB$(G)$和QSTAB$(G)$之间定义了三个多面体,通过允许某些切割平面集只切割QSTAB$(G)$的所有分数顶点。QSTAB$(G)$与与STAB$(G)$重合的三个多面体中最大的多面体之间的差异给出了图~$G$不完美阶段的一些信息。我们得到了完美图的三个超类的嵌套集合,并调查了已知哪些图属于这三个超类之一。这就回答了一个问题:哪些图表是“近乎”完美的?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relaxing Perfectness: Which Graphs Are "Almost" Perfect?
For all perfect graphs, the stable set polytope STAB$(G)$ coincides with the fractional stable set polytope QSTAB$(G)$, whereas STAB$(G) \subset$ QSTAB$(G)$ holds iff $G$ is imperfect. Padberg asked in the early seventies for ``almost'' perfect graphs. He characterized those graphs for which the difference between STAB$(G)$ and QSTAB$(G)$ is smallest possible. We develop this idea further and define three polytopes between STAB$(G)$ and QSTAB$(G)$ by allowing certain sets of cutting planes only to cut off all the fractional vertices of QSTAB$(G)$. The difference between QSTAB$(G)$ and the largest of the three polytopes coinciding with STAB$(G)$ gives some information on the stage of imperfectness of the graph~$G$. We obtain a nested collection of three superclasses of perfect graphs and survey which graphs are known to belong to one of those three superclasses. This answers the question: which graphs are ``almost'' perfect?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信