{"title":"令人放松的完美:哪些图表“几乎”完美?","authors":"Annegret K. Wagler","doi":"10.1137/1.9780898718805.ch7","DOIUrl":null,"url":null,"abstract":"For all perfect graphs, the stable set polytope STAB$(G)$ coincides with the fractional stable set polytope QSTAB$(G)$, whereas STAB$(G) \\subset$ QSTAB$(G)$ holds iff $G$ is imperfect. Padberg asked in the early seventies for ``almost'' perfect graphs. He characterized those graphs for which the difference between STAB$(G)$ and QSTAB$(G)$ is smallest possible. We develop this idea further and define three polytopes between STAB$(G)$ and QSTAB$(G)$ by allowing certain sets of cutting planes only to cut off all the fractional vertices of QSTAB$(G)$. The difference between QSTAB$(G)$ and the largest of the three polytopes coinciding with STAB$(G)$ gives some information on the stage of imperfectness of the graph~$G$. We obtain a nested collection of three superclasses of perfect graphs and survey which graphs are known to belong to one of those three superclasses. This answers the question: which graphs are ``almost'' perfect?","PeriodicalId":416196,"journal":{"name":"The Sharpest Cut","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Relaxing Perfectness: Which Graphs Are \\\"Almost\\\" Perfect?\",\"authors\":\"Annegret K. Wagler\",\"doi\":\"10.1137/1.9780898718805.ch7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For all perfect graphs, the stable set polytope STAB$(G)$ coincides with the fractional stable set polytope QSTAB$(G)$, whereas STAB$(G) \\\\subset$ QSTAB$(G)$ holds iff $G$ is imperfect. Padberg asked in the early seventies for ``almost'' perfect graphs. He characterized those graphs for which the difference between STAB$(G)$ and QSTAB$(G)$ is smallest possible. We develop this idea further and define three polytopes between STAB$(G)$ and QSTAB$(G)$ by allowing certain sets of cutting planes only to cut off all the fractional vertices of QSTAB$(G)$. The difference between QSTAB$(G)$ and the largest of the three polytopes coinciding with STAB$(G)$ gives some information on the stage of imperfectness of the graph~$G$. We obtain a nested collection of three superclasses of perfect graphs and survey which graphs are known to belong to one of those three superclasses. This answers the question: which graphs are ``almost'' perfect?\",\"PeriodicalId\":416196,\"journal\":{\"name\":\"The Sharpest Cut\",\"volume\":\"08 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Sharpest Cut\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9780898718805.ch7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sharpest Cut","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9780898718805.ch7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relaxing Perfectness: Which Graphs Are "Almost" Perfect?
For all perfect graphs, the stable set polytope STAB$(G)$ coincides with the fractional stable set polytope QSTAB$(G)$, whereas STAB$(G) \subset$ QSTAB$(G)$ holds iff $G$ is imperfect. Padberg asked in the early seventies for ``almost'' perfect graphs. He characterized those graphs for which the difference between STAB$(G)$ and QSTAB$(G)$ is smallest possible. We develop this idea further and define three polytopes between STAB$(G)$ and QSTAB$(G)$ by allowing certain sets of cutting planes only to cut off all the fractional vertices of QSTAB$(G)$. The difference between QSTAB$(G)$ and the largest of the three polytopes coinciding with STAB$(G)$ gives some information on the stage of imperfectness of the graph~$G$. We obtain a nested collection of three superclasses of perfect graphs and survey which graphs are known to belong to one of those three superclasses. This answers the question: which graphs are ``almost'' perfect?