一种新型青光眼疾病智能检测系统

M. A. Lazouni, A. Feroui, S. Mahmoudi
{"title":"一种新型青光眼疾病智能检测系统","authors":"M. A. Lazouni, A. Feroui, S. Mahmoudi","doi":"10.1504/IJCAET.2019.10020170","DOIUrl":null,"url":null,"abstract":"Glaucoma is a redundant disease and a major cause of blindness resulting from damage in the optic nerve. This disease generally spreads very slowly and does not show any symptom at the beginning. The research presented in this paper is both a clinical and a technological aid for diagnosis of early glaucoma based on four different artificial intelligence classification techniques, which are: multi-layer perceptron, support vector machine, K-nearest neighbour and decision tree. A majority vote system was applied to these techniques in order to optimize the performances of the proposed system. As far as the ratio cup to disc, which is one of the descriptors of the collected database, in this paper we detect automatically the cup by the k-means algorithm and the disc using mathematical morphology method. Moreover, we proposed a contour adjustment technique (Ellipse Fitting). The obtained results are satisfying, promising, and prove the efficiency and the coherence of our new database.","PeriodicalId":346646,"journal":{"name":"Int. J. Comput. Aided Eng. Technol.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new intelligent system for glaucoma disease detection\",\"authors\":\"M. A. Lazouni, A. Feroui, S. Mahmoudi\",\"doi\":\"10.1504/IJCAET.2019.10020170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glaucoma is a redundant disease and a major cause of blindness resulting from damage in the optic nerve. This disease generally spreads very slowly and does not show any symptom at the beginning. The research presented in this paper is both a clinical and a technological aid for diagnosis of early glaucoma based on four different artificial intelligence classification techniques, which are: multi-layer perceptron, support vector machine, K-nearest neighbour and decision tree. A majority vote system was applied to these techniques in order to optimize the performances of the proposed system. As far as the ratio cup to disc, which is one of the descriptors of the collected database, in this paper we detect automatically the cup by the k-means algorithm and the disc using mathematical morphology method. Moreover, we proposed a contour adjustment technique (Ellipse Fitting). The obtained results are satisfying, promising, and prove the efficiency and the coherence of our new database.\",\"PeriodicalId\":346646,\"journal\":{\"name\":\"Int. J. Comput. Aided Eng. Technol.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Aided Eng. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCAET.2019.10020170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Aided Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCAET.2019.10020170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

青光眼是一种累赘疾病,是视神经损伤导致失明的主要原因。这种疾病通常传播非常缓慢,开始时没有任何症状。本文的研究是基于多层感知机、支持向量机、k近邻和决策树四种不同的人工智能分类技术对早期青光眼诊断的临床和技术辅助。为了优化所提出的系统的性能,在这些技术中应用了多数表决制。对于杯盘比是所收集数据库的描述符之一,本文采用k-means算法自动检测杯盘,采用数学形态学方法自动检测盘盘。此外,我们还提出了一种轮廓调整技术(椭圆拟合)。得到的结果是令人满意的,有希望的,并证明了我们的新数据库的效率和一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new intelligent system for glaucoma disease detection
Glaucoma is a redundant disease and a major cause of blindness resulting from damage in the optic nerve. This disease generally spreads very slowly and does not show any symptom at the beginning. The research presented in this paper is both a clinical and a technological aid for diagnosis of early glaucoma based on four different artificial intelligence classification techniques, which are: multi-layer perceptron, support vector machine, K-nearest neighbour and decision tree. A majority vote system was applied to these techniques in order to optimize the performances of the proposed system. As far as the ratio cup to disc, which is one of the descriptors of the collected database, in this paper we detect automatically the cup by the k-means algorithm and the disc using mathematical morphology method. Moreover, we proposed a contour adjustment technique (Ellipse Fitting). The obtained results are satisfying, promising, and prove the efficiency and the coherence of our new database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信