集值逻辑在并交组合下的完备性准则

A. Ngom, C. Reischer, D. Simovici, I. Stojmenovic
{"title":"集值逻辑在并交组合下的完备性准则","authors":"A. Ngom, C. Reischer, D. Simovici, I. Stojmenovic","doi":"10.1109/ISMVL.1997.601377","DOIUrl":null,"url":null,"abstract":"This paper discusses the Boolean completeness problems in r-valued set logic, which is the logic of functions mapping n-tuples of subsets into subsets over r values. Boolean functions are convenient choice as building blocks in the design of set logic circuits. Given a set S of Boolean functions, a set of functions F is S-complete if any set logic function can be composed from F once all Boolean functions from S are added to F. For the special case U=[/spl cup/, /spl cap/], we characterize all U-maximal sets in r-valued set logic. A set F is then U-complete if it is not a subset of any of these U-maximal sets, which is a completeness criterion in r-valued set logic under compositions with U functions.","PeriodicalId":206024,"journal":{"name":"Proceedings 1997 27th International Symposium on Multiple- Valued Logic","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Completeness criteria in set-valued logic under compositions with union and intersection\",\"authors\":\"A. Ngom, C. Reischer, D. Simovici, I. Stojmenovic\",\"doi\":\"10.1109/ISMVL.1997.601377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the Boolean completeness problems in r-valued set logic, which is the logic of functions mapping n-tuples of subsets into subsets over r values. Boolean functions are convenient choice as building blocks in the design of set logic circuits. Given a set S of Boolean functions, a set of functions F is S-complete if any set logic function can be composed from F once all Boolean functions from S are added to F. For the special case U=[/spl cup/, /spl cap/], we characterize all U-maximal sets in r-valued set logic. A set F is then U-complete if it is not a subset of any of these U-maximal sets, which is a completeness criterion in r-valued set logic under compositions with U functions.\",\"PeriodicalId\":206024,\"journal\":{\"name\":\"Proceedings 1997 27th International Symposium on Multiple- Valued Logic\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1997 27th International Symposium on Multiple- Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1997.601377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1997 27th International Symposium on Multiple- Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1997.601377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了r值集合逻辑中的布尔完备性问题,r值集合逻辑是函数将子集的n元组映射到r值上的子集的逻辑。布尔函数是设计集合逻辑电路的方便选择。给定一个布尔函数集S,如果将S中的所有布尔函数加到F中,任一集逻辑函数可由F组成,则该集函数F是S完全的。对于特殊情况U=[/spl cup/, /spl cap/],我们刻画了r值集合逻辑中的所有U极大集。如果一个集合F不是这些U极大集合中的任何一个子集,则它是U完全的,这是r值集合逻辑中U函数复合下的完备性判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Completeness criteria in set-valued logic under compositions with union and intersection
This paper discusses the Boolean completeness problems in r-valued set logic, which is the logic of functions mapping n-tuples of subsets into subsets over r values. Boolean functions are convenient choice as building blocks in the design of set logic circuits. Given a set S of Boolean functions, a set of functions F is S-complete if any set logic function can be composed from F once all Boolean functions from S are added to F. For the special case U=[/spl cup/, /spl cap/], we characterize all U-maximal sets in r-valued set logic. A set F is then U-complete if it is not a subset of any of these U-maximal sets, which is a completeness criterion in r-valued set logic under compositions with U functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信