异构无线传感器网络的K-Centers Mean-shift反向Mean-shift聚类算法

Q. Xie, Yizong Cheng
{"title":"异构无线传感器网络的K-Centers Mean-shift反向Mean-shift聚类算法","authors":"Q. Xie, Yizong Cheng","doi":"10.1109/WTS.2014.6835019","DOIUrl":null,"url":null,"abstract":"A clustering algorithm K-centers mean-shift reverse mean-shift for heterogeneous wireless sensor networks is presented in this paper, addressing the empty cluster problem as a key issue. Many clustering algorithms for sensor networks have empty cluster problems due to random deployment, which causes resource and cost inefficiencies. Our algorithm calculates the mean-shift of sensor nodes and the reverse mean-shift of cluster heads to iteratively move cluster heads closer to the sensor nodes' density and away from cluster heads' density. This helps cluster heads better accommodate the distribution of sensors. Our proposed K-Centers Mean-shift Reverse Mean-shift algorithm decreases the number of empty clusters dramatically, and it also balances the sizes of clusters more evenly.","PeriodicalId":199195,"journal":{"name":"2014 Wireless Telecommunications Symposium","volume":"433 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"K-Centers Mean-shift Reverse Mean-shift clustering algorithm over heterogeneous wireless sensor networks\",\"authors\":\"Q. Xie, Yizong Cheng\",\"doi\":\"10.1109/WTS.2014.6835019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A clustering algorithm K-centers mean-shift reverse mean-shift for heterogeneous wireless sensor networks is presented in this paper, addressing the empty cluster problem as a key issue. Many clustering algorithms for sensor networks have empty cluster problems due to random deployment, which causes resource and cost inefficiencies. Our algorithm calculates the mean-shift of sensor nodes and the reverse mean-shift of cluster heads to iteratively move cluster heads closer to the sensor nodes' density and away from cluster heads' density. This helps cluster heads better accommodate the distribution of sensors. Our proposed K-Centers Mean-shift Reverse Mean-shift algorithm decreases the number of empty clusters dramatically, and it also balances the sizes of clusters more evenly.\",\"PeriodicalId\":199195,\"journal\":{\"name\":\"2014 Wireless Telecommunications Symposium\",\"volume\":\"433 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Wireless Telecommunications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WTS.2014.6835019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Wireless Telecommunications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WTS.2014.6835019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

针对异构无线传感器网络中存在的空簇问题,提出了一种k中心mean-shift逆mean-shift聚类算法。许多传感器网络的聚类算法由于随机部署而存在空簇问题,导致资源和成本效率低下。我们的算法计算传感器节点的平均位移和簇头的反向平均位移,迭代地使簇头更接近传感器节点的密度,远离簇头的密度。这有助于簇头更好地适应传感器的分布。我们提出的K-Centers Mean-shift Reverse Mean-shift算法显著减少了空簇的数量,并且更均匀地平衡了簇的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-Centers Mean-shift Reverse Mean-shift clustering algorithm over heterogeneous wireless sensor networks
A clustering algorithm K-centers mean-shift reverse mean-shift for heterogeneous wireless sensor networks is presented in this paper, addressing the empty cluster problem as a key issue. Many clustering algorithms for sensor networks have empty cluster problems due to random deployment, which causes resource and cost inefficiencies. Our algorithm calculates the mean-shift of sensor nodes and the reverse mean-shift of cluster heads to iteratively move cluster heads closer to the sensor nodes' density and away from cluster heads' density. This helps cluster heads better accommodate the distribution of sensors. Our proposed K-Centers Mean-shift Reverse Mean-shift algorithm decreases the number of empty clusters dramatically, and it also balances the sizes of clusters more evenly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信