一个可重构的模拟系统,用于高效的随机生物计算

B. Marr, S. Brink, P. Hasler, D.V. Anderson
{"title":"一个可重构的模拟系统,用于高效的随机生物计算","authors":"B. Marr, S. Brink, P. Hasler, D.V. Anderson","doi":"10.1109/BIOCAS.2008.4696932","DOIUrl":null,"url":null,"abstract":"Motivated by the many stochastic processes found in biology that allow for ultra-efficient computing, this paper explores circuit implementations for stochastic computation in hardware. Several novel contributions are presented in this paper, namely a dynamically controllable system of random number generators that produces Bernoulli random variables, exponentially distributed random variables, and allows for random variables of an arbitrary distribution to be generated. This system is implemented on a reconfigurable analog chipset allowing for the first time ever a hardware stochastic process with a user input to control the probability distribution. The utility of this system is demonstrated by implementing the well-known Gillespie algorithm for simulating an arbitrary biological system trajectory of sufficiently small molecules where over a 127times performance improvement over current software approaches is shown.","PeriodicalId":415200,"journal":{"name":"2008 IEEE Biomedical Circuits and Systems Conference","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A reconfigurable, analog system for efficient stochastic biological computation\",\"authors\":\"B. Marr, S. Brink, P. Hasler, D.V. Anderson\",\"doi\":\"10.1109/BIOCAS.2008.4696932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the many stochastic processes found in biology that allow for ultra-efficient computing, this paper explores circuit implementations for stochastic computation in hardware. Several novel contributions are presented in this paper, namely a dynamically controllable system of random number generators that produces Bernoulli random variables, exponentially distributed random variables, and allows for random variables of an arbitrary distribution to be generated. This system is implemented on a reconfigurable analog chipset allowing for the first time ever a hardware stochastic process with a user input to control the probability distribution. The utility of this system is demonstrated by implementing the well-known Gillespie algorithm for simulating an arbitrary biological system trajectory of sufficiently small molecules where over a 127times performance improvement over current software approaches is shown.\",\"PeriodicalId\":415200,\"journal\":{\"name\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2008.4696932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2008.4696932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

受生物学中发现的许多允许超高效计算的随机过程的激励,本文探讨了硬件中随机计算的电路实现。本文提出了几个新颖的贡献,即一个动态可控的随机数发生器系统,它产生伯努利随机变量,指数分布的随机变量,并允许产生任意分布的随机变量。该系统是在一个可重构的模拟芯片组上实现的,允许有史以来第一次使用用户输入来控制概率分布的硬件随机过程。该系统的实用性通过实现著名的Gillespie算法来证明,该算法用于模拟足够小分子的任意生物系统轨迹,其中显示了比当前软件方法提高127倍以上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reconfigurable, analog system for efficient stochastic biological computation
Motivated by the many stochastic processes found in biology that allow for ultra-efficient computing, this paper explores circuit implementations for stochastic computation in hardware. Several novel contributions are presented in this paper, namely a dynamically controllable system of random number generators that produces Bernoulli random variables, exponentially distributed random variables, and allows for random variables of an arbitrary distribution to be generated. This system is implemented on a reconfigurable analog chipset allowing for the first time ever a hardware stochastic process with a user input to control the probability distribution. The utility of this system is demonstrated by implementing the well-known Gillespie algorithm for simulating an arbitrary biological system trajectory of sufficiently small molecules where over a 127times performance improvement over current software approaches is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信