非流形对象的表示

L. Floriani, Franco Morando, E. Puppo
{"title":"非流形对象的表示","authors":"L. Floriani, Franco Morando, E. Puppo","doi":"10.1145/781606.781656","DOIUrl":null,"url":null,"abstract":"In our previous work [2], we have shown that a non-manifold, mixed-dimensional object described by simplicial complexes can be decomposed in a unique way into regular components, all belonging to a well-understood class. Based on such decomposition, we define here a two-level topological data structure for representing non-manifold objects in any dimension: the first level represents components; while the second level represents the connectivity relation among them. The resulting data structure is compact and scalable, allowing for the efficient treatment of singularities without burdening well-behaved parts of a complex with excessive space overheads.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"487 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Representation of non-manifold objects\",\"authors\":\"L. Floriani, Franco Morando, E. Puppo\",\"doi\":\"10.1145/781606.781656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our previous work [2], we have shown that a non-manifold, mixed-dimensional object described by simplicial complexes can be decomposed in a unique way into regular components, all belonging to a well-understood class. Based on such decomposition, we define here a two-level topological data structure for representing non-manifold objects in any dimension: the first level represents components; while the second level represents the connectivity relation among them. The resulting data structure is compact and scalable, allowing for the efficient treatment of singularities without burdening well-behaved parts of a complex with excessive space overheads.\",\"PeriodicalId\":405863,\"journal\":{\"name\":\"ACM Symposium on Solid Modeling and Applications\",\"volume\":\"487 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Symposium on Solid Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/781606.781656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/781606.781656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在我们之前的工作[2]中,我们已经证明了由简单复合体描述的非流形混合维对象可以以一种独特的方式分解为规则组件,所有组件都属于一个很好理解的类。基于这种分解,我们定义了一种两级拓扑数据结构,用于表示任意维度的非流形对象:第一级表示组件;第二层表示它们之间的连通性关系。生成的数据结构紧凑且可扩展,允许有效地处理奇点,而不会给复杂的行为良好的部分带来过多的空间开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation of non-manifold objects
In our previous work [2], we have shown that a non-manifold, mixed-dimensional object described by simplicial complexes can be decomposed in a unique way into regular components, all belonging to a well-understood class. Based on such decomposition, we define here a two-level topological data structure for representing non-manifold objects in any dimension: the first level represents components; while the second level represents the connectivity relation among them. The resulting data structure is compact and scalable, allowing for the efficient treatment of singularities without burdening well-behaved parts of a complex with excessive space overheads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信