{"title":"孟加拉街道坑洼检测与修复成本估算:基于人工智能的多案例分析","authors":"Md. Safaiat Hossain, Rafiul Bari Angan, M. Hasan","doi":"10.1109/ECCE57851.2023.10101579","DOIUrl":null,"url":null,"abstract":"This study focuses on the real-world application of a state-of-the-art convolution neural network (CNN) based pothole detection model and its practical implications. A multiple-scenario analysis was performed, combining several experiments based on video recorded at different environmental conditions and vehicle speeds. Moreover, the performance of the CNN-based YOLOv4-tiny AI model was compared with an expert human grader (civil engineer). The findings from the comparative analysis suggest that out of five different cases, the AI-based model (69.57-85.00%) outperformed the human evaluator (43.67-80.67%) in four cases, with the highest accuracy of 85%. This indicates the utility of using an AI-based approach to pothole detection, especially in regional areas of developing countries like Bangladesh.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pothole Detection and Estimation of Repair Cost in Bangladeshi Street: AI-based Multiple Case Analysis\",\"authors\":\"Md. Safaiat Hossain, Rafiul Bari Angan, M. Hasan\",\"doi\":\"10.1109/ECCE57851.2023.10101579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the real-world application of a state-of-the-art convolution neural network (CNN) based pothole detection model and its practical implications. A multiple-scenario analysis was performed, combining several experiments based on video recorded at different environmental conditions and vehicle speeds. Moreover, the performance of the CNN-based YOLOv4-tiny AI model was compared with an expert human grader (civil engineer). The findings from the comparative analysis suggest that out of five different cases, the AI-based model (69.57-85.00%) outperformed the human evaluator (43.67-80.67%) in four cases, with the highest accuracy of 85%. This indicates the utility of using an AI-based approach to pothole detection, especially in regional areas of developing countries like Bangladesh.\",\"PeriodicalId\":131537,\"journal\":{\"name\":\"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE57851.2023.10101579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pothole Detection and Estimation of Repair Cost in Bangladeshi Street: AI-based Multiple Case Analysis
This study focuses on the real-world application of a state-of-the-art convolution neural network (CNN) based pothole detection model and its practical implications. A multiple-scenario analysis was performed, combining several experiments based on video recorded at different environmental conditions and vehicle speeds. Moreover, the performance of the CNN-based YOLOv4-tiny AI model was compared with an expert human grader (civil engineer). The findings from the comparative analysis suggest that out of five different cases, the AI-based model (69.57-85.00%) outperformed the human evaluator (43.67-80.67%) in four cases, with the highest accuracy of 85%. This indicates the utility of using an AI-based approach to pothole detection, especially in regional areas of developing countries like Bangladesh.