一种改进的HAP大规模MIMO系统K-means用户分组设计

Guorong Zhang, Ling-ge Jiang, Pingping Ji, Shiyi Zou, Chen He, Di He
{"title":"一种改进的HAP大规模MIMO系统K-means用户分组设计","authors":"Guorong Zhang, Ling-ge Jiang, Pingping Ji, Shiyi Zou, Chen He, Di He","doi":"10.1109/NaNA53684.2021.00057","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new user grouping scheme for the high altitude platform (HAP) massive Multiple-Input Multiple-Output (MIMO) systems based on statistical-eigenmode (SE). It has been proved that SE makes a major contribution to signal power for HAPs. Then, a Fubini-Study distance based modified K-means (FS-MKM) user grouping method is proposed aiming at reducing intra-group interference and improving system performance. The proposed modified K-means algorithm improves the initial points selection of the original K-means algorithm. The Fubini-Study distance is obtained based on the SEs of different users. Simulation results confirm that the proposed user grouping algorithm yields significant performance enhancement.","PeriodicalId":414672,"journal":{"name":"2021 International Conference on Networking and Network Applications (NaNA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified K-means User Grouping Design for HAP Massive MIMO Systems\",\"authors\":\"Guorong Zhang, Ling-ge Jiang, Pingping Ji, Shiyi Zou, Chen He, Di He\",\"doi\":\"10.1109/NaNA53684.2021.00057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new user grouping scheme for the high altitude platform (HAP) massive Multiple-Input Multiple-Output (MIMO) systems based on statistical-eigenmode (SE). It has been proved that SE makes a major contribution to signal power for HAPs. Then, a Fubini-Study distance based modified K-means (FS-MKM) user grouping method is proposed aiming at reducing intra-group interference and improving system performance. The proposed modified K-means algorithm improves the initial points selection of the original K-means algorithm. The Fubini-Study distance is obtained based on the SEs of different users. Simulation results confirm that the proposed user grouping algorithm yields significant performance enhancement.\",\"PeriodicalId\":414672,\"journal\":{\"name\":\"2021 International Conference on Networking and Network Applications (NaNA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Networking and Network Applications (NaNA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NaNA53684.2021.00057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Networking and Network Applications (NaNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaNA53684.2021.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对高空平台(HAP)大规模多输入多输出(MIMO)系统,提出了一种基于统计特征模态(SE)的用户分组方案。事实证明,SE对HAPs的信号功率有重要贡献。然后,提出了一种基于Fubini-Study距离的改进K-means (FS-MKM)用户分组方法,以减少组内干扰,提高系统性能。改进的K-means算法改进了原K-means算法的初始点选取。Fubini-Study距离是根据不同用户的SEs得到的。仿真结果验证了所提出的用户分组算法的性能有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified K-means User Grouping Design for HAP Massive MIMO Systems
In this paper, we propose a new user grouping scheme for the high altitude platform (HAP) massive Multiple-Input Multiple-Output (MIMO) systems based on statistical-eigenmode (SE). It has been proved that SE makes a major contribution to signal power for HAPs. Then, a Fubini-Study distance based modified K-means (FS-MKM) user grouping method is proposed aiming at reducing intra-group interference and improving system performance. The proposed modified K-means algorithm improves the initial points selection of the original K-means algorithm. The Fubini-Study distance is obtained based on the SEs of different users. Simulation results confirm that the proposed user grouping algorithm yields significant performance enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信