多线性化的硬度和特征2的vnp完备性

P. Hrubes
{"title":"多线性化的硬度和特征2的vnp完备性","authors":"P. Hrubes","doi":"10.1145/2940323","DOIUrl":null,"url":null,"abstract":"For a Boolean function f: {0, 1}n → {0, 1}, let fˆ be the unique multilinear polynomial such that f(x) = fˆ(x) holds for every x ˆ {0, 1}n. We show that, assuming VP ≠ VNP, there exists a polynomial-time computable f such that fˆ requires superpolynomial arithmetic circuits. In fact, this f can be taken as a monotone 2-CNF, or a product of affine functions. This holds over any field. To prove the results in characteristic 2, we design new VNP-complete families in this characteristic. This includes the polynomial ECn counting edge covers in a graph and the polynomial mcliquen counting cliques in a graph with deleted perfect matching. They both correspond to polynomial-time decidable problems, a phenomenon previously encountered only in characteristic ≠ 2.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"264 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On Hardness of Multilinearization and VNP-Completeness in Characteristic 2\",\"authors\":\"P. Hrubes\",\"doi\":\"10.1145/2940323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a Boolean function f: {0, 1}n → {0, 1}, let fˆ be the unique multilinear polynomial such that f(x) = fˆ(x) holds for every x ˆ {0, 1}n. We show that, assuming VP ≠ VNP, there exists a polynomial-time computable f such that fˆ requires superpolynomial arithmetic circuits. In fact, this f can be taken as a monotone 2-CNF, or a product of affine functions. This holds over any field. To prove the results in characteristic 2, we design new VNP-complete families in this characteristic. This includes the polynomial ECn counting edge covers in a graph and the polynomial mcliquen counting cliques in a graph with deleted perfect matching. They both correspond to polynomial-time decidable problems, a phenomenon previously encountered only in characteristic ≠ 2.\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"264 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2940323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2940323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对于布尔函数f: {0,1}n→{0,1},设f -是唯一的多元线性多项式,使得f(x) = f - (x)对每个x - {0,1}n都成立。我们证明,假设VP≠VNP,存在一个多项式时间可计算的f,使得f -需要超多项式算术电路。事实上,这个f可以看作是单调的2-CNF,或者是仿射函数的乘积。这适用于任何领域。为了证明特征2中的结果,我们在该特征上设计了新的vnp -完全族。这包括图中的多项式ECn计数边盖和图中删除完美匹配的多项式mcliquen计数团。它们都对应于多项式时间可决定的问题,这种现象以前只在特征≠2时遇到过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Hardness of Multilinearization and VNP-Completeness in Characteristic 2
For a Boolean function f: {0, 1}n → {0, 1}, let fˆ be the unique multilinear polynomial such that f(x) = fˆ(x) holds for every x ˆ {0, 1}n. We show that, assuming VP ≠ VNP, there exists a polynomial-time computable f such that fˆ requires superpolynomial arithmetic circuits. In fact, this f can be taken as a monotone 2-CNF, or a product of affine functions. This holds over any field. To prove the results in characteristic 2, we design new VNP-complete families in this characteristic. This includes the polynomial ECn counting edge covers in a graph and the polynomial mcliquen counting cliques in a graph with deleted perfect matching. They both correspond to polynomial-time decidable problems, a phenomenon previously encountered only in characteristic ≠ 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信