KPCA与NS-LDA结合人脸识别的研究

Lei Zhao, Jiwen Dong, Xiuli Li
{"title":"KPCA与NS-LDA结合人脸识别的研究","authors":"Lei Zhao, Jiwen Dong, Xiuli Li","doi":"10.1109/ISCID.2012.43","DOIUrl":null,"url":null,"abstract":"Kernel Principal Component Analysis (KPCA) is the promotion of PCA in kernel space, Null space LDA can be directly employed to choose a set of optimal projection vectors by preserving effective information of null space of within-class scatter maximizing ratio of the between-class scatter to the within-class scatter. This paper puts forward the method about KPCA plus NS-LDA for feature extraction and is applied in face recognition study, it enhances face recognition performance by virtue of combining the advantages of KPCA makes use of data high order characteristic and good divisibility of NS-LDA projection matrix. the experimental results show this method could effectively improve the recognition rate.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on KPCA and NS-LDA Combined Face Recognition\",\"authors\":\"Lei Zhao, Jiwen Dong, Xiuli Li\",\"doi\":\"10.1109/ISCID.2012.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel Principal Component Analysis (KPCA) is the promotion of PCA in kernel space, Null space LDA can be directly employed to choose a set of optimal projection vectors by preserving effective information of null space of within-class scatter maximizing ratio of the between-class scatter to the within-class scatter. This paper puts forward the method about KPCA plus NS-LDA for feature extraction and is applied in face recognition study, it enhances face recognition performance by virtue of combining the advantages of KPCA makes use of data high order characteristic and good divisibility of NS-LDA projection matrix. the experimental results show this method could effectively improve the recognition rate.\",\"PeriodicalId\":246432,\"journal\":{\"name\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2012.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

核主成分分析(KPCA)是主成分分析在核空间中的推广,零空间LDA通过保留类内散点零空间的有效信息,最大化类间散点与类内散点的比值,直接选择一组最优的投影向量。本文提出了KPCA加NS-LDA进行特征提取的方法,并将其应用于人脸识别研究中,结合KPCA的优点,利用数据的高阶特性和NS-LDA投影矩阵良好的可整除性,提高了人脸识别性能。实验结果表明,该方法能有效提高图像的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on KPCA and NS-LDA Combined Face Recognition
Kernel Principal Component Analysis (KPCA) is the promotion of PCA in kernel space, Null space LDA can be directly employed to choose a set of optimal projection vectors by preserving effective information of null space of within-class scatter maximizing ratio of the between-class scatter to the within-class scatter. This paper puts forward the method about KPCA plus NS-LDA for feature extraction and is applied in face recognition study, it enhances face recognition performance by virtue of combining the advantages of KPCA makes use of data high order characteristic and good divisibility of NS-LDA projection matrix. the experimental results show this method could effectively improve the recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信