OPERA-gSAM:高可扩展性和高效率的UMI测序大数据处理框架

P. V. Caderno, Feras M. Awaysheh, Yolanda Colino-Sanguino, Laura Rodriguez de la Fuente, F. Valdés-Mora, J. C. Cabaleiro, T. F. Pena, D. Gallego-Ortega
{"title":"OPERA-gSAM:高可扩展性和高效率的UMI测序大数据处理框架","authors":"P. V. Caderno, Feras M. Awaysheh, Yolanda Colino-Sanguino, Laura Rodriguez de la Fuente, F. Valdés-Mora, J. C. Cabaleiro, T. F. Pena, D. Gallego-Ortega","doi":"10.1109/CCGridW59191.2023.00038","DOIUrl":null,"url":null,"abstract":"genome Sequence Alignment Map The rapidly increasing demand for next-generation biotechnologies has enabled the development of DNA and RNA big data-oriented (BD) pipelines. The preprocessing stage requires sequencing and alignment tools that provide barcoding for error correction and increase accuracy during sequencing. Unique Molecular Identifiers (UMIs) promise a highly accurate bioinformatic identification of PCR duplication before the amplification stage. However, using alignment coordinates alone is Data-intensiveand challenging due to the increased demand for computational throughput, affecting the performance of the underlying resources. This paper proposes a highly scalable data scheduling and resource allocation framework called OPERA-gSAM for the genome Sequence Alignment Map (SAM). OPERA-gSAM, an OPportunistic and Elastic Resource Allocation, is an enabling big data platform (i.e., Apache Spark) for the next-generation massively parallel sequencing applications. We validate OPERA-gSAM scalability and efficiency using Genomics single-cell RNA sequencing. Our experiments demonstrate the usability and high efficiency of the proposed framework. Results show that OPERA-gSAM is up to 2.4× faster while consuming 50% fewer resources than the conventional pipeline using SAM and UMI tools.","PeriodicalId":341115,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OPERA-gSAM: Big Data Processing Framework for UMI Sequencing at High Scalability and Efficiency\",\"authors\":\"P. V. Caderno, Feras M. Awaysheh, Yolanda Colino-Sanguino, Laura Rodriguez de la Fuente, F. Valdés-Mora, J. C. Cabaleiro, T. F. Pena, D. Gallego-Ortega\",\"doi\":\"10.1109/CCGridW59191.2023.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"genome Sequence Alignment Map The rapidly increasing demand for next-generation biotechnologies has enabled the development of DNA and RNA big data-oriented (BD) pipelines. The preprocessing stage requires sequencing and alignment tools that provide barcoding for error correction and increase accuracy during sequencing. Unique Molecular Identifiers (UMIs) promise a highly accurate bioinformatic identification of PCR duplication before the amplification stage. However, using alignment coordinates alone is Data-intensiveand challenging due to the increased demand for computational throughput, affecting the performance of the underlying resources. This paper proposes a highly scalable data scheduling and resource allocation framework called OPERA-gSAM for the genome Sequence Alignment Map (SAM). OPERA-gSAM, an OPportunistic and Elastic Resource Allocation, is an enabling big data platform (i.e., Apache Spark) for the next-generation massively parallel sequencing applications. We validate OPERA-gSAM scalability and efficiency using Genomics single-cell RNA sequencing. Our experiments demonstrate the usability and high efficiency of the proposed framework. Results show that OPERA-gSAM is up to 2.4× faster while consuming 50% fewer resources than the conventional pipeline using SAM and UMI tools.\",\"PeriodicalId\":341115,\"journal\":{\"name\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGridW59191.2023.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGridW59191.2023.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对下一代生物技术快速增长的需求使得DNA和RNA大数据导向(BD)管道的发展成为可能。预处理阶段需要测序和校准工具,提供条形码的错误纠正和提高测序期间的准确性。唯一分子标识符(UMIs)有望在扩增阶段之前对PCR复制进行高度准确的生物信息学鉴定。然而,单独使用对齐坐标是数据密集型的,并且由于对计算吞吐量的需求增加而具有挑战性,从而影响底层资源的性能。本文提出了一个高度可扩展的基因组序列比对图(SAM)数据调度和资源分配框架OPERA-gSAM。OPERA-gSAM,一个机会和弹性资源分配,是一个支持下一代大规模并行测序应用的大数据平台(即Apache Spark)。我们使用Genomics单细胞RNA测序验证了OPERA-gSAM的可扩展性和效率。实验证明了该框架的可用性和高效性。结果表明,与使用SAM和UMI工具的传统管道相比,OPERA-gSAM的速度提高了2.4倍,同时消耗的资源减少了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OPERA-gSAM: Big Data Processing Framework for UMI Sequencing at High Scalability and Efficiency
genome Sequence Alignment Map The rapidly increasing demand for next-generation biotechnologies has enabled the development of DNA and RNA big data-oriented (BD) pipelines. The preprocessing stage requires sequencing and alignment tools that provide barcoding for error correction and increase accuracy during sequencing. Unique Molecular Identifiers (UMIs) promise a highly accurate bioinformatic identification of PCR duplication before the amplification stage. However, using alignment coordinates alone is Data-intensiveand challenging due to the increased demand for computational throughput, affecting the performance of the underlying resources. This paper proposes a highly scalable data scheduling and resource allocation framework called OPERA-gSAM for the genome Sequence Alignment Map (SAM). OPERA-gSAM, an OPportunistic and Elastic Resource Allocation, is an enabling big data platform (i.e., Apache Spark) for the next-generation massively parallel sequencing applications. We validate OPERA-gSAM scalability and efficiency using Genomics single-cell RNA sequencing. Our experiments demonstrate the usability and high efficiency of the proposed framework. Results show that OPERA-gSAM is up to 2.4× faster while consuming 50% fewer resources than the conventional pipeline using SAM and UMI tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信