基于cnn的Android恶意软件检测

M. Ganesh, Priyanka Pednekar, P. Prabhuswamy, Divyashri Sreedharan Nair, Younghee Park, Hyeran Jeon
{"title":"基于cnn的Android恶意软件检测","authors":"M. Ganesh, Priyanka Pednekar, P. Prabhuswamy, Divyashri Sreedharan Nair, Younghee Park, Hyeran Jeon","doi":"10.1109/ICSSA.2017.18","DOIUrl":null,"url":null,"abstract":"The growth in mobile devices has exponentially increased, making information easy to access but at the same time vulnerable. Malicious applications can gain access to sensitive and critical user information by exploiting unsolicited permission controls. Since high false detection rates render signature-based antivirus solutions on mobile phones ineffective, especially in malware variants, it is imperative to develop a more efficient and adaptable solution. This paper presents a deep learning-based malware detection to identify and categorize malicious applications. The proposed method investigates permission patterns based on a convolutional neural network. Our solution identifies malware with 93% accuracy on a dataset of 2500 Android applications, of which 2000 were malicious and 500 were benign.","PeriodicalId":307280,"journal":{"name":"2017 International Conference on Software Security and Assurance (ICSSA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"CNN-Based Android Malware Detection\",\"authors\":\"M. Ganesh, Priyanka Pednekar, P. Prabhuswamy, Divyashri Sreedharan Nair, Younghee Park, Hyeran Jeon\",\"doi\":\"10.1109/ICSSA.2017.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth in mobile devices has exponentially increased, making information easy to access but at the same time vulnerable. Malicious applications can gain access to sensitive and critical user information by exploiting unsolicited permission controls. Since high false detection rates render signature-based antivirus solutions on mobile phones ineffective, especially in malware variants, it is imperative to develop a more efficient and adaptable solution. This paper presents a deep learning-based malware detection to identify and categorize malicious applications. The proposed method investigates permission patterns based on a convolutional neural network. Our solution identifies malware with 93% accuracy on a dataset of 2500 Android applications, of which 2000 were malicious and 500 were benign.\",\"PeriodicalId\":307280,\"journal\":{\"name\":\"2017 International Conference on Software Security and Assurance (ICSSA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Software Security and Assurance (ICSSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSA.2017.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Software Security and Assurance (ICSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSA.2017.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

移动设备的增长呈指数级增长,使信息易于访问,但同时也容易受到攻击。恶意应用程序可以利用未经请求的权限控制来访问敏感和关键的用户信息。由于高误检率使得基于签名的手机防病毒解决方案无效,特别是在恶意软件变体中,因此开发更高效、适应性更强的解决方案势在必行。本文提出了一种基于深度学习的恶意软件检测方法来识别和分类恶意应用程序。该方法基于卷积神经网络研究权限模式。我们的解决方案在2500个Android应用程序的数据集上识别恶意软件的准确率为93%,其中2000个是恶意的,500个是良性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN-Based Android Malware Detection
The growth in mobile devices has exponentially increased, making information easy to access but at the same time vulnerable. Malicious applications can gain access to sensitive and critical user information by exploiting unsolicited permission controls. Since high false detection rates render signature-based antivirus solutions on mobile phones ineffective, especially in malware variants, it is imperative to develop a more efficient and adaptable solution. This paper presents a deep learning-based malware detection to identify and categorize malicious applications. The proposed method investigates permission patterns based on a convolutional neural network. Our solution identifies malware with 93% accuracy on a dataset of 2500 Android applications, of which 2000 were malicious and 500 were benign.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信