具有不确定线性相关白噪声的鲁棒集中加权测量融合稳态卡尔曼估计

Xuemei Wang, Z. Deng
{"title":"具有不确定线性相关白噪声的鲁棒集中加权测量融合稳态卡尔曼估计","authors":"Xuemei Wang, Z. Deng","doi":"10.1109/ICEICT.2016.7879702","DOIUrl":null,"url":null,"abstract":"For the multisensor systems with uncertain-variance linearly correlated white noises, according to the minimax robust estimation principle, applying the weighted least squares(WLS) and the full-rank decomposition of matrix, the robust centralized fusion and weighted measurement fusion steady-state Kalman estimators (filter, predictor and smoother) are presented in a unified framework. Their equivalence and accuracy relations are proved. Applying the Lyapunov equation approach, their robustness is proved in the sense that their actual estimation error variances are guaranteed to have a minimal upper bound for all admissible uncertain noise variances. A simulation example to tracking system verifies their correctness and effectiveness.","PeriodicalId":224387,"journal":{"name":"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust centralized and weighted measurement fusion steady-state Kalman estimators with uncertain linearly correlated white noises\",\"authors\":\"Xuemei Wang, Z. Deng\",\"doi\":\"10.1109/ICEICT.2016.7879702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the multisensor systems with uncertain-variance linearly correlated white noises, according to the minimax robust estimation principle, applying the weighted least squares(WLS) and the full-rank decomposition of matrix, the robust centralized fusion and weighted measurement fusion steady-state Kalman estimators (filter, predictor and smoother) are presented in a unified framework. Their equivalence and accuracy relations are proved. Applying the Lyapunov equation approach, their robustness is proved in the sense that their actual estimation error variances are guaranteed to have a minimal upper bound for all admissible uncertain noise variances. A simulation example to tracking system verifies their correctness and effectiveness.\",\"PeriodicalId\":224387,\"journal\":{\"name\":\"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEICT.2016.7879702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT.2016.7879702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对具有不确定方差线性相关白噪声的多传感器系统,根据极大极小鲁棒估计原理,应用加权最小二乘和矩阵的全秩分解,在统一的框架下给出了鲁棒集中融合和加权测量融合稳态卡尔曼估计(滤波、预测和平滑)。证明了它们的等价性和精度关系。应用Lyapunov方程方法,证明了它们的鲁棒性,即它们的实际估计误差方差对于所有允许的不确定噪声方差都保证有最小上界。通过跟踪系统的仿真实例验证了该方法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust centralized and weighted measurement fusion steady-state Kalman estimators with uncertain linearly correlated white noises
For the multisensor systems with uncertain-variance linearly correlated white noises, according to the minimax robust estimation principle, applying the weighted least squares(WLS) and the full-rank decomposition of matrix, the robust centralized fusion and weighted measurement fusion steady-state Kalman estimators (filter, predictor and smoother) are presented in a unified framework. Their equivalence and accuracy relations are proved. Applying the Lyapunov equation approach, their robustness is proved in the sense that their actual estimation error variances are guaranteed to have a minimal upper bound for all admissible uncertain noise variances. A simulation example to tracking system verifies their correctness and effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信