R. Ardeshiri, Bharat Balagopal, Amro Alsabbagh, Chengbin Ma, M. Chow
{"title":"电池管理系统中的机器学习方法:最新进展:剩余使用寿命和故障检测","authors":"R. Ardeshiri, Bharat Balagopal, Amro Alsabbagh, Chengbin Ma, M. Chow","doi":"10.1109/IESES45645.2020.9210642","DOIUrl":null,"url":null,"abstract":"Lithium-ion battery packs have been widely applied in many high-power applications which need battery management system (BMS), such as electric vehicles (EVs) and smart grids. Implementations of the BMS needs a combination between software and hardware, which includes battery state estimation, fault detection, monitoring and control tasks. This paper provides a comprehensive study on the state-of-the-art of machine learning approaches on BMS. It differentiates between these methods on the basis of principle, type, structure, and performance evaluation.","PeriodicalId":262855,"journal":{"name":"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","volume":"401 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Machine Learning Approaches in Battery Management Systems: State of the Art: Remaining useful life and fault detection\",\"authors\":\"R. Ardeshiri, Bharat Balagopal, Amro Alsabbagh, Chengbin Ma, M. Chow\",\"doi\":\"10.1109/IESES45645.2020.9210642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion battery packs have been widely applied in many high-power applications which need battery management system (BMS), such as electric vehicles (EVs) and smart grids. Implementations of the BMS needs a combination between software and hardware, which includes battery state estimation, fault detection, monitoring and control tasks. This paper provides a comprehensive study on the state-of-the-art of machine learning approaches on BMS. It differentiates between these methods on the basis of principle, type, structure, and performance evaluation.\",\"PeriodicalId\":262855,\"journal\":{\"name\":\"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)\",\"volume\":\"401 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IESES45645.2020.9210642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IESES45645.2020.9210642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Approaches in Battery Management Systems: State of the Art: Remaining useful life and fault detection
Lithium-ion battery packs have been widely applied in many high-power applications which need battery management system (BMS), such as electric vehicles (EVs) and smart grids. Implementations of the BMS needs a combination between software and hardware, which includes battery state estimation, fault detection, monitoring and control tasks. This paper provides a comprehensive study on the state-of-the-art of machine learning approaches on BMS. It differentiates between these methods on the basis of principle, type, structure, and performance evaluation.