V. Bagaria, A. Dembo, Sreeram Kannan, Sewoong Oh, David Tse, P. Viswanath, Xuechao Wang, O. Zeitouni
{"title":"权益证明最长链协议:安全性与可预测性","authors":"V. Bagaria, A. Dembo, Sreeram Kannan, Sewoong Oh, David Tse, P. Viswanath, Xuechao Wang, O. Zeitouni","doi":"10.1145/3560829.3563559","DOIUrl":null,"url":null,"abstract":"The Nakamoto longest chain protocol is remarkably simple and has been proven to provide security against any adversary with less than 50% of the total hashing power. Proof-of-stake (PoS) protocols are an energy efficient alternative; however existing protocols adopting Nakamoto's longest chain design achieve provable security only by allowing long-term predictability, subjecting the system to serious bribery attacks. In this paper, we prove that a natural longest chain PoS protocol with similar predictability as Nakamoto's PoW protocol can achieve security against any adversary with less than 1/(1+e) fraction of the total stake. Moreover we propose a new family of longest chain PoS protocols with a formal proof of their security against a 50% adversary, while only requiring short-term predictability.","PeriodicalId":182280,"journal":{"name":"Proceedings of the 2022 ACM Workshop on Developments in Consensus","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Proof-of-Stake Longest Chain Protocols: Security vs Predictability\",\"authors\":\"V. Bagaria, A. Dembo, Sreeram Kannan, Sewoong Oh, David Tse, P. Viswanath, Xuechao Wang, O. Zeitouni\",\"doi\":\"10.1145/3560829.3563559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Nakamoto longest chain protocol is remarkably simple and has been proven to provide security against any adversary with less than 50% of the total hashing power. Proof-of-stake (PoS) protocols are an energy efficient alternative; however existing protocols adopting Nakamoto's longest chain design achieve provable security only by allowing long-term predictability, subjecting the system to serious bribery attacks. In this paper, we prove that a natural longest chain PoS protocol with similar predictability as Nakamoto's PoW protocol can achieve security against any adversary with less than 1/(1+e) fraction of the total stake. Moreover we propose a new family of longest chain PoS protocols with a formal proof of their security against a 50% adversary, while only requiring short-term predictability.\",\"PeriodicalId\":182280,\"journal\":{\"name\":\"Proceedings of the 2022 ACM Workshop on Developments in Consensus\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 ACM Workshop on Developments in Consensus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3560829.3563559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 ACM Workshop on Developments in Consensus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3560829.3563559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proof-of-Stake Longest Chain Protocols: Security vs Predictability
The Nakamoto longest chain protocol is remarkably simple and has been proven to provide security against any adversary with less than 50% of the total hashing power. Proof-of-stake (PoS) protocols are an energy efficient alternative; however existing protocols adopting Nakamoto's longest chain design achieve provable security only by allowing long-term predictability, subjecting the system to serious bribery attacks. In this paper, we prove that a natural longest chain PoS protocol with similar predictability as Nakamoto's PoW protocol can achieve security against any adversary with less than 1/(1+e) fraction of the total stake. Moreover we propose a new family of longest chain PoS protocols with a formal proof of their security against a 50% adversary, while only requiring short-term predictability.