从部分标记数据中学习时间序列模型

Yifan Shi, A. Bobick, Irfan Essa
{"title":"从部分标记数据中学习时间序列模型","authors":"Yifan Shi, A. Bobick, Irfan Essa","doi":"10.1109/CVPR.2006.174","DOIUrl":null,"url":null,"abstract":"Graphical models are often used to represent and recognize activities. Purely unsupervised methods (such as HMMs) can be trained automatically but yield models whose internal structure - the nodes - are difficult to interpret semantically. Manually constructed networks typically have nodes corresponding to sub-events, but the programming and training of these networks is tedious and requires extensive domain expertise. In this paper, we propose a semi-supervised approach in which a manually structured, Propagation Network (a form of a DBN) is initialized from a small amount of fully annotated data, and then refined by an EM-based learning method in an unsupervised fashion. During node refinement (the M step) a boosting-based algorithm is employed to train the evidence detectors of individual nodes. Experiments on a variety of data types - vision and inertial measurements - in several tasks demonstrate the ability to learn from as little as one fully annotated example accompanied by a small number of positive but non-annotated training examples. The system is applied to both recognition and anomaly detection tasks.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Learning Temporal Sequence Model from Partially Labeled Data\",\"authors\":\"Yifan Shi, A. Bobick, Irfan Essa\",\"doi\":\"10.1109/CVPR.2006.174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphical models are often used to represent and recognize activities. Purely unsupervised methods (such as HMMs) can be trained automatically but yield models whose internal structure - the nodes - are difficult to interpret semantically. Manually constructed networks typically have nodes corresponding to sub-events, but the programming and training of these networks is tedious and requires extensive domain expertise. In this paper, we propose a semi-supervised approach in which a manually structured, Propagation Network (a form of a DBN) is initialized from a small amount of fully annotated data, and then refined by an EM-based learning method in an unsupervised fashion. During node refinement (the M step) a boosting-based algorithm is employed to train the evidence detectors of individual nodes. Experiments on a variety of data types - vision and inertial measurements - in several tasks demonstrate the ability to learn from as little as one fully annotated example accompanied by a small number of positive but non-annotated training examples. The system is applied to both recognition and anomaly detection tasks.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

图形模型通常用于表示和识别活动。纯粹的无监督方法(比如hmm)可以自动训练,但是产生的模型的内部结构——节点——很难从语义上解释。人工构建的网络通常具有对应于子事件的节点,但是这些网络的编程和训练是繁琐的,并且需要广泛的领域专业知识。在本文中,我们提出了一种半监督方法,其中手动结构化的传播网络(DBN的一种形式)从少量完全注释的数据初始化,然后通过基于em的学习方法以无监督的方式进行改进。在节点细化(M步)过程中,采用基于增强的算法来训练单个节点的证据检测器。在几个任务中,对各种数据类型(视觉和惯性测量)进行的实验证明了从一个完全注释的示例中学习的能力,并伴随着少量正面但未注释的训练示例。该系统可用于识别和异常检测任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Temporal Sequence Model from Partially Labeled Data
Graphical models are often used to represent and recognize activities. Purely unsupervised methods (such as HMMs) can be trained automatically but yield models whose internal structure - the nodes - are difficult to interpret semantically. Manually constructed networks typically have nodes corresponding to sub-events, but the programming and training of these networks is tedious and requires extensive domain expertise. In this paper, we propose a semi-supervised approach in which a manually structured, Propagation Network (a form of a DBN) is initialized from a small amount of fully annotated data, and then refined by an EM-based learning method in an unsupervised fashion. During node refinement (the M step) a boosting-based algorithm is employed to train the evidence detectors of individual nodes. Experiments on a variety of data types - vision and inertial measurements - in several tasks demonstrate the ability to learn from as little as one fully annotated example accompanied by a small number of positive but non-annotated training examples. The system is applied to both recognition and anomaly detection tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信