FPGA加速基于CNN-RNN的机器健康监测

Xiaoyu Feng, Jinshan Yue, Qingwei Guo, Huazhong Yang, Yongpan Liu
{"title":"FPGA加速基于CNN-RNN的机器健康监测","authors":"Xiaoyu Feng, Jinshan Yue, Qingwei Guo, Huazhong Yang, Yongpan Liu","doi":"10.1109/AICAS.2019.8771482","DOIUrl":null,"url":null,"abstract":"Emerging artificial intelligence brings new opportunities for embedded machine health monitoring systems. However, previous work mainly focus on algorithm improvement and ignore the software-hardware co-design. This paper proposes a CNN-RNN algorithm for remaining useful life (RUL) prediction, with hardware optimization for practical deployment. The CNN-RNN algorithm combines the feature extraction ability of CNN and the sequential processing ability of RNN, which shows 23%–53% improvement on the CMAPSS dataset. This algorithm also considers hardware implementation overhead and an FPGA based accelerator is developed. The accelerator adopts kernel-optimized design to utilize data reuse and reduce memory accesses. It enables real-time response and 5.89GOPs/W energy efficiency within small size and cost overhead. The FPGA implementation shows 15× CNN speedup and 9× overall speedup compared with the embedded processor Cortex-A9.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerating CNN-RNN Based Machine Health Monitoring on FPGA\",\"authors\":\"Xiaoyu Feng, Jinshan Yue, Qingwei Guo, Huazhong Yang, Yongpan Liu\",\"doi\":\"10.1109/AICAS.2019.8771482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging artificial intelligence brings new opportunities for embedded machine health monitoring systems. However, previous work mainly focus on algorithm improvement and ignore the software-hardware co-design. This paper proposes a CNN-RNN algorithm for remaining useful life (RUL) prediction, with hardware optimization for practical deployment. The CNN-RNN algorithm combines the feature extraction ability of CNN and the sequential processing ability of RNN, which shows 23%–53% improvement on the CMAPSS dataset. This algorithm also considers hardware implementation overhead and an FPGA based accelerator is developed. The accelerator adopts kernel-optimized design to utilize data reuse and reduce memory accesses. It enables real-time response and 5.89GOPs/W energy efficiency within small size and cost overhead. The FPGA implementation shows 15× CNN speedup and 9× overall speedup compared with the embedded processor Cortex-A9.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

新兴的人工智能为嵌入式机器健康监测系统带来了新的机遇。然而,以往的工作主要集中在算法改进上,忽视了软硬件协同设计。本文提出了一种基于CNN-RNN的剩余使用寿命(RUL)预测算法,并对实际部署进行了硬件优化。CNN-RNN算法结合了CNN的特征提取能力和RNN的顺序处理能力,在CMAPSS数据集上表现出23%-53%的提升。该算法还考虑了硬件实现开销,并开发了基于FPGA的加速器。加速器采用内核优化设计,利用数据重用,减少内存访问。它在小尺寸和成本开销下实现实时响应和5.89GOPs/W的能源效率。与嵌入式处理器Cortex-A9相比,FPGA实现的CNN速度提高了15倍,总体速度提高了9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating CNN-RNN Based Machine Health Monitoring on FPGA
Emerging artificial intelligence brings new opportunities for embedded machine health monitoring systems. However, previous work mainly focus on algorithm improvement and ignore the software-hardware co-design. This paper proposes a CNN-RNN algorithm for remaining useful life (RUL) prediction, with hardware optimization for practical deployment. The CNN-RNN algorithm combines the feature extraction ability of CNN and the sequential processing ability of RNN, which shows 23%–53% improvement on the CMAPSS dataset. This algorithm also considers hardware implementation overhead and an FPGA based accelerator is developed. The accelerator adopts kernel-optimized design to utilize data reuse and reduce memory accesses. It enables real-time response and 5.89GOPs/W energy efficiency within small size and cost overhead. The FPGA implementation shows 15× CNN speedup and 9× overall speedup compared with the embedded processor Cortex-A9.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信