交通流的贝叶斯分层建模-在马耳他道路网络中的应用

Luana Chetcuti Zammit, M. Attard, K. Scerri
{"title":"交通流的贝叶斯分层建模-在马耳他道路网络中的应用","authors":"Luana Chetcuti Zammit, M. Attard, K. Scerri","doi":"10.1109/ITSC.2013.6728423","DOIUrl":null,"url":null,"abstract":"A Bayesian Hierarchical Model is presented to estimate route choice preferences between OD pairs. The methodology adopted utilizes both Origin-Destination (OD) information and traffic counts observed on some of the links in the network to estimate route choice probabilities. Route choice preferences are represented by multinomial distributions and estimated via a Markov Chain Monte Carlo (MCMC) algorithm. The proposed model takes into account measurement errors in the link counts, the uncertanties present in OD data and alternative routes choices both inside or outside the network of study. The proposed method is validated on both a synthetic example and the traffic network of Malta.","PeriodicalId":275768,"journal":{"name":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bayesian hierarchical modelling of traffic flow - With application to Malta's road network\",\"authors\":\"Luana Chetcuti Zammit, M. Attard, K. Scerri\",\"doi\":\"10.1109/ITSC.2013.6728423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Bayesian Hierarchical Model is presented to estimate route choice preferences between OD pairs. The methodology adopted utilizes both Origin-Destination (OD) information and traffic counts observed on some of the links in the network to estimate route choice probabilities. Route choice preferences are represented by multinomial distributions and estimated via a Markov Chain Monte Carlo (MCMC) algorithm. The proposed model takes into account measurement errors in the link counts, the uncertanties present in OD data and alternative routes choices both inside or outside the network of study. The proposed method is validated on both a synthetic example and the traffic network of Malta.\",\"PeriodicalId\":275768,\"journal\":{\"name\":\"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2013.6728423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2013.6728423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种贝叶斯层次模型来估计OD对之间的路径选择偏好。所采用的方法利用出发地(OD)信息和在网络中某些链路上观察到的流量计数来估计路由选择概率。路径选择偏好由多项分布表示,并通过马尔可夫链蒙特卡罗(MCMC)算法估计。该模型考虑了链路计数中的测量误差、OD数据中存在的不确定性以及研究网络内外的备选路由选择。通过一个综合算例和马耳他的交通网络对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian hierarchical modelling of traffic flow - With application to Malta's road network
A Bayesian Hierarchical Model is presented to estimate route choice preferences between OD pairs. The methodology adopted utilizes both Origin-Destination (OD) information and traffic counts observed on some of the links in the network to estimate route choice probabilities. Route choice preferences are represented by multinomial distributions and estimated via a Markov Chain Monte Carlo (MCMC) algorithm. The proposed model takes into account measurement errors in the link counts, the uncertanties present in OD data and alternative routes choices both inside or outside the network of study. The proposed method is validated on both a synthetic example and the traffic network of Malta.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信