毛虫副角的直径

Benjamin Aram Berendsohn
{"title":"毛虫副角的直径","authors":"Benjamin Aram Berendsohn","doi":"10.4230/LIPIcs.SWAT.2022.14","DOIUrl":null,"url":null,"abstract":"The caterpillar associahedron A ( G ) is a polytope arising from the rotation graph of search trees on a caterpillar tree G , generalizing the rotation graph of binary search trees (BSTs) and thus the conventional associahedron. We show that the diameter of A ( G ) is Θ( n + m · ( H + 1)), where n is the number of vertices, m is the number of leaves, and H is the entropy of the leaf distribution of G . Our proofs reveal a strong connection between caterpillar associahedra and searching in BSTs. We prove the lower bound using Wilber’s first lower bound for dynamic BSTs, and the upper bound by reducing the problem to searching in static BSTs. discussions and suggestions.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The diameter of caterpillar associahedra\",\"authors\":\"Benjamin Aram Berendsohn\",\"doi\":\"10.4230/LIPIcs.SWAT.2022.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The caterpillar associahedron A ( G ) is a polytope arising from the rotation graph of search trees on a caterpillar tree G , generalizing the rotation graph of binary search trees (BSTs) and thus the conventional associahedron. We show that the diameter of A ( G ) is Θ( n + m · ( H + 1)), where n is the number of vertices, m is the number of leaves, and H is the entropy of the leaf distribution of G . Our proofs reveal a strong connection between caterpillar associahedra and searching in BSTs. We prove the lower bound using Wilber’s first lower bound for dynamic BSTs, and the upper bound by reducing the problem to searching in static BSTs. discussions and suggestions.\",\"PeriodicalId\":447445,\"journal\":{\"name\":\"Scandinavian Workshop on Algorithm Theory\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Workshop on Algorithm Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SWAT.2022.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2022.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

毛虫关联面体A (G)是由毛虫树G上的搜索树的旋转图产生的多面体,它推广了二叉搜索树(BSTs)的旋转图,从而推广了传统的关联面体。我们证明了A (G)的直径为Θ(n + m·(H + 1)),其中n为顶点数,m为叶片数,H为G的叶片分布的熵。我们的证明揭示了毛虫关联体与BSTs中搜索之间的紧密联系。我们利用Wilber的第一下界证明了动态BSTs的下界,并通过将问题简化为在静态BSTs中搜索来证明上界。讨论和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The diameter of caterpillar associahedra
The caterpillar associahedron A ( G ) is a polytope arising from the rotation graph of search trees on a caterpillar tree G , generalizing the rotation graph of binary search trees (BSTs) and thus the conventional associahedron. We show that the diameter of A ( G ) is Θ( n + m · ( H + 1)), where n is the number of vertices, m is the number of leaves, and H is the entropy of the leaf distribution of G . Our proofs reveal a strong connection between caterpillar associahedra and searching in BSTs. We prove the lower bound using Wilber’s first lower bound for dynamic BSTs, and the upper bound by reducing the problem to searching in static BSTs. discussions and suggestions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信