双曲平面上独轮车最优控制的正交可积性

Y. Butt, A. I. Bhatti, Y. Sachkov
{"title":"双曲平面上独轮车最优控制的正交可积性","authors":"Y. Butt, A. I. Bhatti, Y. Sachkov","doi":"10.1109/ACC.2015.7171997","DOIUrl":null,"url":null,"abstract":"We consider the problem of integrability by quadratures of normal Hamiltonian system in sub-Riemannian problem on the groups of motions of hyperbolic plane or pseudo Euclidean plane which form the Lie group SH(2). The first step towards proof of integrability is to calculate the local representation of the Lie group SH(2) in canonical coordinates of second kind. Wei-Norman transformation is applied to obtain this local representation. The Wei-Norman representation shows that the left invariant control system defined on the Lie group SH(2) is equivalent to the motion of a unicycle on hyperbolic plane. Three integrals of motion satisfying the Liouville's integrability conditions are then calculated to prove that the normal Hamiltonian system is integrable by quadratures.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Integrability by quadratures in optimal control of a unicycle on hyperbolic plane\",\"authors\":\"Y. Butt, A. I. Bhatti, Y. Sachkov\",\"doi\":\"10.1109/ACC.2015.7171997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of integrability by quadratures of normal Hamiltonian system in sub-Riemannian problem on the groups of motions of hyperbolic plane or pseudo Euclidean plane which form the Lie group SH(2). The first step towards proof of integrability is to calculate the local representation of the Lie group SH(2) in canonical coordinates of second kind. Wei-Norman transformation is applied to obtain this local representation. The Wei-Norman representation shows that the left invariant control system defined on the Lie group SH(2) is equivalent to the motion of a unicycle on hyperbolic plane. Three integrals of motion satisfying the Liouville's integrability conditions are then calculated to prove that the normal Hamiltonian system is integrable by quadratures.\",\"PeriodicalId\":223665,\"journal\":{\"name\":\"2015 American Control Conference (ACC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2015.7171997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7171997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了构成李群SH(2)的双曲平面或伪欧几里德平面运动群在次黎曼问题中正规哈密顿系统的正交可积性问题。证明可积性的第一步是计算李群SH(2)在第二类正则坐标下的局部表示。采用Wei-Norman变换得到该局部表示。Wei-Norman表示表明,在李群SH(2)上定义的左不变控制系统等价于双曲平面上的独轮车运动。然后计算了满足Liouville可积条件的三个运动积分,证明了正规哈密顿系统是可积的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrability by quadratures in optimal control of a unicycle on hyperbolic plane
We consider the problem of integrability by quadratures of normal Hamiltonian system in sub-Riemannian problem on the groups of motions of hyperbolic plane or pseudo Euclidean plane which form the Lie group SH(2). The first step towards proof of integrability is to calculate the local representation of the Lie group SH(2) in canonical coordinates of second kind. Wei-Norman transformation is applied to obtain this local representation. The Wei-Norman representation shows that the left invariant control system defined on the Lie group SH(2) is equivalent to the motion of a unicycle on hyperbolic plane. Three integrals of motion satisfying the Liouville's integrability conditions are then calculated to prove that the normal Hamiltonian system is integrable by quadratures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信