基于粒子滤波累进校正的无线传感器网络自定位

T. Hanselmann, Yu Zhang, M. Morelande, Mohd Ifran Md Nor, J. J. Tan, Xingshe Zhou, Yee Wei Law
{"title":"基于粒子滤波累进校正的无线传感器网络自定位","authors":"T. Hanselmann, Yu Zhang, M. Morelande, Mohd Ifran Md Nor, J. J. Tan, Xingshe Zhou, Yee Wei Law","doi":"10.4108/CHINACOM.2010.63","DOIUrl":null,"url":null,"abstract":"A centralized self-localization algorithm is used to estimate sensor locations. From the known positions of at least 3 anchor nodes the remaining sensor positions are estimated using an efficient particle filter (PF) with progressive correction. The measurement model is a simple two-parameter log-normal shadowing model, where the parameters are estimated concurrently. Experiments using Crossbow Imote2 motes show that an error of less than 16% is achievable in an indoor environment. The results demonstrate that by using PF with progressive correction, a small number of measurements and a simple signal propagation model are sufficient to give low localization errors.","PeriodicalId":422191,"journal":{"name":"2010 5th International ICST Conference on Communications and Networking in China","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Self-localization in wireless sensor networks using particle filtering with progressive correction\",\"authors\":\"T. Hanselmann, Yu Zhang, M. Morelande, Mohd Ifran Md Nor, J. J. Tan, Xingshe Zhou, Yee Wei Law\",\"doi\":\"10.4108/CHINACOM.2010.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A centralized self-localization algorithm is used to estimate sensor locations. From the known positions of at least 3 anchor nodes the remaining sensor positions are estimated using an efficient particle filter (PF) with progressive correction. The measurement model is a simple two-parameter log-normal shadowing model, where the parameters are estimated concurrently. Experiments using Crossbow Imote2 motes show that an error of less than 16% is achievable in an indoor environment. The results demonstrate that by using PF with progressive correction, a small number of measurements and a simple signal propagation model are sufficient to give low localization errors.\",\"PeriodicalId\":422191,\"journal\":{\"name\":\"2010 5th International ICST Conference on Communications and Networking in China\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International ICST Conference on Communications and Networking in China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/CHINACOM.2010.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International ICST Conference on Communications and Networking in China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/CHINACOM.2010.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用集中式自定位算法估计传感器位置。根据已知的至少3个锚节点的位置,使用有效的粒子滤波(PF)进行渐进校正,估计剩余的传感器位置。测量模型是一个简单的双参数对数正态阴影模型,其中参数是同时估计的。使用Crossbow Imote2 motes进行的实验表明,在室内环境下,误差小于16%。结果表明,采用带渐进校正的PF,少量的测量量和简单的信号传播模型就足以获得较低的定位误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-localization in wireless sensor networks using particle filtering with progressive correction
A centralized self-localization algorithm is used to estimate sensor locations. From the known positions of at least 3 anchor nodes the remaining sensor positions are estimated using an efficient particle filter (PF) with progressive correction. The measurement model is a simple two-parameter log-normal shadowing model, where the parameters are estimated concurrently. Experiments using Crossbow Imote2 motes show that an error of less than 16% is achievable in an indoor environment. The results demonstrate that by using PF with progressive correction, a small number of measurements and a simple signal propagation model are sufficient to give low localization errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信