{"title":"Dupire公式的扩展:随机利率和随机局部波动率","authors":"O. Ogetbil","doi":"10.2139/ssrn.3598736","DOIUrl":null,"url":null,"abstract":"We derive generalizations of Dupire formula to the cases of general stochastic drift and/or stochastic local volatility. First, we handle a case in which the drift is given as difference of two stochastic short rates. Such a setting is natural in foreign exchange context where the short rates correspond to the short rates of the two currencies, equity single-currency context with stochastic dividend yield, or commodity context with stochastic convenience yield. We present the formula both in a call surface formulation as well as total implied variance formulation where the latter avoids calendar spread arbitrage by construction. We provide derivations for the case where both short rates are given as single factor processes and present the limits for a single stochastic rate or all deterministic short rates. The limits agree with published results. Then we derive a formulation that allows a more general stochastic drift and diffusion including one or more stochastic local volatility terms. In the general setting, our derivation allows the computation and calibration of the leverage function for stochastic local volatility models.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extensions of Dupire Formula: Stochastic Interest Rates and Stochastic Local Volatility\",\"authors\":\"O. Ogetbil\",\"doi\":\"10.2139/ssrn.3598736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive generalizations of Dupire formula to the cases of general stochastic drift and/or stochastic local volatility. First, we handle a case in which the drift is given as difference of two stochastic short rates. Such a setting is natural in foreign exchange context where the short rates correspond to the short rates of the two currencies, equity single-currency context with stochastic dividend yield, or commodity context with stochastic convenience yield. We present the formula both in a call surface formulation as well as total implied variance formulation where the latter avoids calendar spread arbitrage by construction. We provide derivations for the case where both short rates are given as single factor processes and present the limits for a single stochastic rate or all deterministic short rates. The limits agree with published results. Then we derive a formulation that allows a more general stochastic drift and diffusion including one or more stochastic local volatility terms. In the general setting, our derivation allows the computation and calibration of the leverage function for stochastic local volatility models.\",\"PeriodicalId\":293888,\"journal\":{\"name\":\"Econometric Modeling: Derivatives eJournal\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Derivatives eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3598736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3598736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extensions of Dupire Formula: Stochastic Interest Rates and Stochastic Local Volatility
We derive generalizations of Dupire formula to the cases of general stochastic drift and/or stochastic local volatility. First, we handle a case in which the drift is given as difference of two stochastic short rates. Such a setting is natural in foreign exchange context where the short rates correspond to the short rates of the two currencies, equity single-currency context with stochastic dividend yield, or commodity context with stochastic convenience yield. We present the formula both in a call surface formulation as well as total implied variance formulation where the latter avoids calendar spread arbitrage by construction. We provide derivations for the case where both short rates are given as single factor processes and present the limits for a single stochastic rate or all deterministic short rates. The limits agree with published results. Then we derive a formulation that allows a more general stochastic drift and diffusion including one or more stochastic local volatility terms. In the general setting, our derivation allows the computation and calibration of the leverage function for stochastic local volatility models.