J. Ramos, J. L. Ausín, J. F. Duque-Carrillo, G. Torelli
{"title":"宽带生物阻抗测量装置的限幅/对数放大器设计","authors":"J. Ramos, J. L. Ausín, J. F. Duque-Carrillo, G. Torelli","doi":"10.1109/BIOCAS.2010.5709628","DOIUrl":null,"url":null,"abstract":"In this paper, a limiting/logarithmic amplifier (LLA) for high dynamic range wideband bioelectrical impedance measurements is presented. The amplifier is composed of eight cascaded gain stages with a folded diode-connected transistor as a load that attain wide bandwidth performance with limited power consumption. The logarithmic conversion of the input variable is carried out with the aid of nine detectors. A prototype in standard 0.35-μm CMOS technology occupies 0.06 mm2 of silicon area and dissipates 2.2 mW from a single 2-V supply. Post-layout results show that the LLA is capable of processing a 65-dB input dynamic range over a frequency interval from 1 kHz to 1 MHz with an accuracy within ± 0.7 dB.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Design of limiting/logarithmic amplifier for wideband bioimpedance measuring devices\",\"authors\":\"J. Ramos, J. L. Ausín, J. F. Duque-Carrillo, G. Torelli\",\"doi\":\"10.1109/BIOCAS.2010.5709628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a limiting/logarithmic amplifier (LLA) for high dynamic range wideband bioelectrical impedance measurements is presented. The amplifier is composed of eight cascaded gain stages with a folded diode-connected transistor as a load that attain wide bandwidth performance with limited power consumption. The logarithmic conversion of the input variable is carried out with the aid of nine detectors. A prototype in standard 0.35-μm CMOS technology occupies 0.06 mm2 of silicon area and dissipates 2.2 mW from a single 2-V supply. Post-layout results show that the LLA is capable of processing a 65-dB input dynamic range over a frequency interval from 1 kHz to 1 MHz with an accuracy within ± 0.7 dB.\",\"PeriodicalId\":440499,\"journal\":{\"name\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2010.5709628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of limiting/logarithmic amplifier for wideband bioimpedance measuring devices
In this paper, a limiting/logarithmic amplifier (LLA) for high dynamic range wideband bioelectrical impedance measurements is presented. The amplifier is composed of eight cascaded gain stages with a folded diode-connected transistor as a load that attain wide bandwidth performance with limited power consumption. The logarithmic conversion of the input variable is carried out with the aid of nine detectors. A prototype in standard 0.35-μm CMOS technology occupies 0.06 mm2 of silicon area and dissipates 2.2 mW from a single 2-V supply. Post-layout results show that the LLA is capable of processing a 65-dB input dynamic range over a frequency interval from 1 kHz to 1 MHz with an accuracy within ± 0.7 dB.