{"title":"信号处理、软计算和控制应用的生物学启发近似数据表示","authors":"E. Petriu","doi":"10.1109/WISP.2007.4447532","DOIUrl":null,"url":null,"abstract":"This paper reviews basics, similarities, and applications of two well-known biology inspired approximate data representation modalities: stochastic data representation and fuzzy linguistic variables.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biology Inspired Approximate Data Representation for Signal Processing, Soft Computing and Control Applications\",\"authors\":\"E. Petriu\",\"doi\":\"10.1109/WISP.2007.4447532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reviews basics, similarities, and applications of two well-known biology inspired approximate data representation modalities: stochastic data representation and fuzzy linguistic variables.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biology Inspired Approximate Data Representation for Signal Processing, Soft Computing and Control Applications
This paper reviews basics, similarities, and applications of two well-known biology inspired approximate data representation modalities: stochastic data representation and fuzzy linguistic variables.