使用下一代异构无线网络的智能电网通信

R. Amin, Jim Martin, Xuehai Zhou
{"title":"使用下一代异构无线网络的智能电网通信","authors":"R. Amin, Jim Martin, Xuehai Zhou","doi":"10.1109/SmartGridComm.2012.6485988","DOIUrl":null,"url":null,"abstract":"In this paper, we present a Smart Grid Home Area Network communication infrastructure solution that is based on future next generation heterogeneous wireless systems. The heterogeneous wireless system is composed of several Radio Access Technologies (RATs) available at consumer premises. The smart devices that use Smart Grid applications are assumed to have reconfigurable radios. A centralized Global Resource Controller (GRC) instructs the smart devices to use a particular RAT at any given time. The device-to-RAT association is made by the GRC using a two-step scheduling algorithm that accounts for the requirements of both best-effort and real-time Smart Grid traffic. To make the solution scalable, the approach utilizes Dynamic Spectrum Access methods to obtain additional open spectrum. We show up to 80% increase in real-time traffic support and 726% increase in best-effort traffic support in our proposed heterogeneous wireless system that uses reconfigurable radios, compared to the homogeneous wireless networks used today by smart devices with static radios.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Smart Grid communication using next generation heterogeneous wireless networks\",\"authors\":\"R. Amin, Jim Martin, Xuehai Zhou\",\"doi\":\"10.1109/SmartGridComm.2012.6485988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a Smart Grid Home Area Network communication infrastructure solution that is based on future next generation heterogeneous wireless systems. The heterogeneous wireless system is composed of several Radio Access Technologies (RATs) available at consumer premises. The smart devices that use Smart Grid applications are assumed to have reconfigurable radios. A centralized Global Resource Controller (GRC) instructs the smart devices to use a particular RAT at any given time. The device-to-RAT association is made by the GRC using a two-step scheduling algorithm that accounts for the requirements of both best-effort and real-time Smart Grid traffic. To make the solution scalable, the approach utilizes Dynamic Spectrum Access methods to obtain additional open spectrum. We show up to 80% increase in real-time traffic support and 726% increase in best-effort traffic support in our proposed heterogeneous wireless system that uses reconfigurable radios, compared to the homogeneous wireless networks used today by smart devices with static radios.\",\"PeriodicalId\":143915,\"journal\":{\"name\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2012.6485988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2012.6485988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文提出了一种基于下一代异构无线系统的智能电网家庭区域网络通信基础设施解决方案。异构无线系统由几种可用于用户场所的无线接入技术(rat)组成。假定使用智能电网应用程序的智能设备具有可重新配置的无线电。集中式全局资源控制器(GRC)指示智能设备在任何给定时间使用特定的RAT。设备到rat的关联是由GRC使用两步调度算法实现的,该算法考虑了最佳努力和实时智能电网流量的要求。为了使解决方案具有可扩展性,该方法利用动态频谱接入方法获得额外的开放频谱。与目前使用静态无线电的智能设备使用的同质无线网络相比,在我们提出的使用可重构无线电的异构无线系统中,实时流量支持增加了80%,最大努力流量支持增加了726%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart Grid communication using next generation heterogeneous wireless networks
In this paper, we present a Smart Grid Home Area Network communication infrastructure solution that is based on future next generation heterogeneous wireless systems. The heterogeneous wireless system is composed of several Radio Access Technologies (RATs) available at consumer premises. The smart devices that use Smart Grid applications are assumed to have reconfigurable radios. A centralized Global Resource Controller (GRC) instructs the smart devices to use a particular RAT at any given time. The device-to-RAT association is made by the GRC using a two-step scheduling algorithm that accounts for the requirements of both best-effort and real-time Smart Grid traffic. To make the solution scalable, the approach utilizes Dynamic Spectrum Access methods to obtain additional open spectrum. We show up to 80% increase in real-time traffic support and 726% increase in best-effort traffic support in our proposed heterogeneous wireless system that uses reconfigurable radios, compared to the homogeneous wireless networks used today by smart devices with static radios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信