{"title":"有限1-单连通数字空间","authors":"Gabor T. Herman","doi":"10.1006/gmip.1997.0456","DOIUrl":null,"url":null,"abstract":"<div><p>Finitary 1-simply connected digital spaces are discrete analogs of the important simply connected spaces in classical topology (i.e., connected spaces in which every loop can be continuously pulled to a point without leaving the space). Loosely speaking, 1-simply connected digital spaces are graphs in which there are no holes larger than a triangle. Many spaces previously studied in digital topology and geometry are instances of this concept. Boundaries in pictures defined over finitary 1-simply connected digital spaces have some desirable general properties; for example, they partition the space into a connected interior and a connected exterior. There is a “one-size-fits-all” algorithm which, given a picture over a finitary 1-simply connected digital space and a boundary face, will return the set of all faces in that boundary, provided only that this set is finite; the proof of correctness of this algorithm is an immediate consequence of the general properties of such spaces.</p></div>","PeriodicalId":100591,"journal":{"name":"Graphical Models and Image Processing","volume":"60 1","pages":"Pages 46-56"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/gmip.1997.0456","citationCount":"11","resultStr":"{\"title\":\"Finitary 1-Simply Connected Digital Spaces\",\"authors\":\"Gabor T. Herman\",\"doi\":\"10.1006/gmip.1997.0456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Finitary 1-simply connected digital spaces are discrete analogs of the important simply connected spaces in classical topology (i.e., connected spaces in which every loop can be continuously pulled to a point without leaving the space). Loosely speaking, 1-simply connected digital spaces are graphs in which there are no holes larger than a triangle. Many spaces previously studied in digital topology and geometry are instances of this concept. Boundaries in pictures defined over finitary 1-simply connected digital spaces have some desirable general properties; for example, they partition the space into a connected interior and a connected exterior. There is a “one-size-fits-all” algorithm which, given a picture over a finitary 1-simply connected digital space and a boundary face, will return the set of all faces in that boundary, provided only that this set is finite; the proof of correctness of this algorithm is an immediate consequence of the general properties of such spaces.</p></div>\",\"PeriodicalId\":100591,\"journal\":{\"name\":\"Graphical Models and Image Processing\",\"volume\":\"60 1\",\"pages\":\"Pages 46-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/gmip.1997.0456\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077316997904561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077316997904561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finitary 1-simply connected digital spaces are discrete analogs of the important simply connected spaces in classical topology (i.e., connected spaces in which every loop can be continuously pulled to a point without leaving the space). Loosely speaking, 1-simply connected digital spaces are graphs in which there are no holes larger than a triangle. Many spaces previously studied in digital topology and geometry are instances of this concept. Boundaries in pictures defined over finitary 1-simply connected digital spaces have some desirable general properties; for example, they partition the space into a connected interior and a connected exterior. There is a “one-size-fits-all” algorithm which, given a picture over a finitary 1-simply connected digital space and a boundary face, will return the set of all faces in that boundary, provided only that this set is finite; the proof of correctness of this algorithm is an immediate consequence of the general properties of such spaces.