混合动力系统的非线性扩展状态观测器

Jaime Arcos-Legarda, J. Cortés-Romero, A. Tovar
{"title":"混合动力系统的非线性扩展状态观测器","authors":"Jaime Arcos-Legarda, J. Cortés-Romero, A. Tovar","doi":"10.1109/CCAC.2019.8921108","DOIUrl":null,"url":null,"abstract":"This paper introduces a nonlinear disturbance observer for hybrid dynamical systems with continuous and discrete dynamics. The hybrid dynamical system considered in this work is a bipedal robot. The robot is modeled by a continuous mathematical model connected to a discrete reset functions. The continuous and discrete dynamics are exposed to model parameter uncertainties and external disturbances. The uncertainties and disturbances in the continuous dynamics are lumped into a total disturbance signal, which is estimated through a nonlinear extended state observer (NESO). The disturbance estimation is used to design an active disturbance rejection control (ADRC). To address the reset function uncertainties on the discrete dynamics, a reference trajectory generator is designed to achieve zero tracking error after each reset function using a smooth transition function from the system state to the nominal references. The control strategy proposed in this work is applied to the gait control of a planar, dynamic bipedal robot with point feet, five degrees of freedom, and one degree of underactuation. The gait stability is tested through a linearized Poincaré return map.","PeriodicalId":184764,"journal":{"name":"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Extended State Observer for Hybrid Dynamical Systems\",\"authors\":\"Jaime Arcos-Legarda, J. Cortés-Romero, A. Tovar\",\"doi\":\"10.1109/CCAC.2019.8921108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a nonlinear disturbance observer for hybrid dynamical systems with continuous and discrete dynamics. The hybrid dynamical system considered in this work is a bipedal robot. The robot is modeled by a continuous mathematical model connected to a discrete reset functions. The continuous and discrete dynamics are exposed to model parameter uncertainties and external disturbances. The uncertainties and disturbances in the continuous dynamics are lumped into a total disturbance signal, which is estimated through a nonlinear extended state observer (NESO). The disturbance estimation is used to design an active disturbance rejection control (ADRC). To address the reset function uncertainties on the discrete dynamics, a reference trajectory generator is designed to achieve zero tracking error after each reset function using a smooth transition function from the system state to the nominal references. The control strategy proposed in this work is applied to the gait control of a planar, dynamic bipedal robot with point feet, five degrees of freedom, and one degree of underactuation. The gait stability is tested through a linearized Poincaré return map.\",\"PeriodicalId\":184764,\"journal\":{\"name\":\"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCAC.2019.8921108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCAC.2019.8921108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了具有连续和离散动力的混合动力系统的非线性扰动观测器。本文研究的混合动力系统是一个双足机器人。采用连续数学模型连接离散复位函数对机器人进行建模。连续和离散动力学会受到模型参数不确定性和外界干扰的影响。将连续动力学中的不确定性和扰动集中到一个总扰动信号中,通过非线性扩展状态观测器(NESO)对其进行估计。利用扰动估计设计了自抗扰控制器(ADRC)。为了解决复位函数对离散动力学的不确定性,设计了参考轨迹发生器,利用从系统状态到标称参考的平滑过渡函数,使每次复位函数后的跟踪误差为零。将所提出的控制策略应用于五自由度、欠驱动1度的平面动态双足点足机器人的步态控制。通过线性化的poincarcars回归图来测试步态稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Extended State Observer for Hybrid Dynamical Systems
This paper introduces a nonlinear disturbance observer for hybrid dynamical systems with continuous and discrete dynamics. The hybrid dynamical system considered in this work is a bipedal robot. The robot is modeled by a continuous mathematical model connected to a discrete reset functions. The continuous and discrete dynamics are exposed to model parameter uncertainties and external disturbances. The uncertainties and disturbances in the continuous dynamics are lumped into a total disturbance signal, which is estimated through a nonlinear extended state observer (NESO). The disturbance estimation is used to design an active disturbance rejection control (ADRC). To address the reset function uncertainties on the discrete dynamics, a reference trajectory generator is designed to achieve zero tracking error after each reset function using a smooth transition function from the system state to the nominal references. The control strategy proposed in this work is applied to the gait control of a planar, dynamic bipedal robot with point feet, five degrees of freedom, and one degree of underactuation. The gait stability is tested through a linearized Poincaré return map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信