理解基于回归的数据挖掘中的最小绝对值

Matt Wimble, M. Yoder, Young K. Ro
{"title":"理解基于回归的数据挖掘中的最小绝对值","authors":"Matt Wimble, M. Yoder, Young K. Ro","doi":"10.5121/IJDKP.2016.6301","DOIUrl":null,"url":null,"abstract":"This article advances our understanding of regression-based data mining by comparing the utility of Least Absolute Value (LAV) and Least Squares (LS) regression methods. Using demographic variables from U.S. state-wide data, we fit variable regression models to dependent variables of varying distributions using both LS and LAV. Forecasts generated from the resulting equations are used to compare the performance of the regression methods under different dependent variable distribution conditions. Initial findings indicate LAV procedures better forecast in data mining applications when the dependent variable is non-normal. Our results differ from those found in prior research using simulated data.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UNDERSTANDING LEAST ABSOLUTE VALUE IN REGRESSION -BASED DATA MINING\",\"authors\":\"Matt Wimble, M. Yoder, Young K. Ro\",\"doi\":\"10.5121/IJDKP.2016.6301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article advances our understanding of regression-based data mining by comparing the utility of Least Absolute Value (LAV) and Least Squares (LS) regression methods. Using demographic variables from U.S. state-wide data, we fit variable regression models to dependent variables of varying distributions using both LS and LAV. Forecasts generated from the resulting equations are used to compare the performance of the regression methods under different dependent variable distribution conditions. Initial findings indicate LAV procedures better forecast in data mining applications when the dependent variable is non-normal. Our results differ from those found in prior research using simulated data.\",\"PeriodicalId\":131153,\"journal\":{\"name\":\"International Journal of Data Mining & Knowledge Management Process\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining & Knowledge Management Process\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJDKP.2016.6301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2016.6301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过比较最小绝对值(LAV)和最小二乘(LS)回归方法的效用,加深了我们对基于回归的数据挖掘的理解。使用来自美国各州数据的人口统计变量,我们使用LS和LAV对不同分布的因变量拟合变量回归模型。利用所得方程所产生的预测结果,比较了不同因变量分布条件下回归方法的性能。初步研究结果表明,当因变量是非正态时,LAV程序可以更好地预测数据挖掘应用。我们的结果与先前使用模拟数据的研究结果不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UNDERSTANDING LEAST ABSOLUTE VALUE IN REGRESSION -BASED DATA MINING
This article advances our understanding of regression-based data mining by comparing the utility of Least Absolute Value (LAV) and Least Squares (LS) regression methods. Using demographic variables from U.S. state-wide data, we fit variable regression models to dependent variables of varying distributions using both LS and LAV. Forecasts generated from the resulting equations are used to compare the performance of the regression methods under different dependent variable distribution conditions. Initial findings indicate LAV procedures better forecast in data mining applications when the dependent variable is non-normal. Our results differ from those found in prior research using simulated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信