乳腺癌风险评估模型的应用

Huaizhou Yang, Tian Luo, Chenzhuo Liu
{"title":"乳腺癌风险评估模型的应用","authors":"Huaizhou Yang, Tian Luo, Chenzhuo Liu","doi":"10.1109/ICSP54964.2022.9778357","DOIUrl":null,"url":null,"abstract":"Looking for a risk assessment model is of great significance for predicting, preventing and diagnosing breast cancer. This paper collects relevant data from SEER database(Survey, Epidemiology, and End Results), uses SVM (Support Vector Machine) and random forest in data mining to predict the possibility of breast cancer, and discusses the application value of Gail breast cancer risk assessment model. Finally, the prediction results based on three risk assessment models are analyzed. The analysis results show that the prediction accuracy rate of Gail model is more excellent.","PeriodicalId":363766,"journal":{"name":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Risk Assessment Model for Breast Cancer\",\"authors\":\"Huaizhou Yang, Tian Luo, Chenzhuo Liu\",\"doi\":\"10.1109/ICSP54964.2022.9778357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Looking for a risk assessment model is of great significance for predicting, preventing and diagnosing breast cancer. This paper collects relevant data from SEER database(Survey, Epidemiology, and End Results), uses SVM (Support Vector Machine) and random forest in data mining to predict the possibility of breast cancer, and discusses the application value of Gail breast cancer risk assessment model. Finally, the prediction results based on three risk assessment models are analyzed. The analysis results show that the prediction accuracy rate of Gail model is more excellent.\",\"PeriodicalId\":363766,\"journal\":{\"name\":\"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSP54964.2022.9778357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP54964.2022.9778357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

寻找乳腺癌的风险评估模型对乳腺癌的预测、预防和诊断具有重要意义。本文从SEER数据库(Survey, Epidemiology, and End Results)中收集相关数据,利用数据挖掘中的SVM(支持向量机)和随机森林对乳腺癌的可能性进行预测,并探讨Gail乳腺癌风险评估模型的应用价值。最后,对基于三种风险评估模型的预测结果进行了分析。分析结果表明,Gail模型的预测准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Risk Assessment Model for Breast Cancer
Looking for a risk assessment model is of great significance for predicting, preventing and diagnosing breast cancer. This paper collects relevant data from SEER database(Survey, Epidemiology, and End Results), uses SVM (Support Vector Machine) and random forest in data mining to predict the possibility of breast cancer, and discusses the application value of Gail breast cancer risk assessment model. Finally, the prediction results based on three risk assessment models are analyzed. The analysis results show that the prediction accuracy rate of Gail model is more excellent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信