PnP:并行和外部内存冰山立方计算

Ying Chen, F. Dehne, Todd Eavis, A. Rau-Chaplin
{"title":"PnP:并行和外部内存冰山立方计算","authors":"Ying Chen, F. Dehne, Todd Eavis, A. Rau-Chaplin","doi":"10.1109/ICDE.2005.107","DOIUrl":null,"url":null,"abstract":"We present \"Pipe 'n Prune\" (PnP), a new hybrid method for iceberg-cube query computation. The novelty of our method is that it achieves a tight integration of top-down piping for data aggregation with bottom-up a priori data pruning. A particular strength of PnP is that it is very efficient for all of the following scenarios: (1) Sequential iceberg-cube queries. (2) External memory iceberg-cube queries. (3) Parallel iceberg-cube queries on shared-nothing PC clusters with multiple disks.","PeriodicalId":297231,"journal":{"name":"21st International Conference on Data Engineering (ICDE'05)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"PnP: parallel and external memory iceberg cube computation\",\"authors\":\"Ying Chen, F. Dehne, Todd Eavis, A. Rau-Chaplin\",\"doi\":\"10.1109/ICDE.2005.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present \\\"Pipe 'n Prune\\\" (PnP), a new hybrid method for iceberg-cube query computation. The novelty of our method is that it achieves a tight integration of top-down piping for data aggregation with bottom-up a priori data pruning. A particular strength of PnP is that it is very efficient for all of the following scenarios: (1) Sequential iceberg-cube queries. (2) External memory iceberg-cube queries. (3) Parallel iceberg-cube queries on shared-nothing PC clusters with multiple disks.\",\"PeriodicalId\":297231,\"journal\":{\"name\":\"21st International Conference on Data Engineering (ICDE'05)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on Data Engineering (ICDE'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2005.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on Data Engineering (ICDE'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2005.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种新的用于冰山-立方体查询计算的混合方法“Pipe 'n Prune”(PnP)。我们方法的新颖之处在于,它实现了自顶向下的数据聚合管道与自底向上的先验数据修剪的紧密集成。PnP的一个特殊优点是,它对以下所有场景都非常有效:(1)顺序冰山立方体查询。(2)外部内存冰山立方体查询。(3)在多磁盘的无共享PC集群上并行冰山立方体查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PnP: parallel and external memory iceberg cube computation
We present "Pipe 'n Prune" (PnP), a new hybrid method for iceberg-cube query computation. The novelty of our method is that it achieves a tight integration of top-down piping for data aggregation with bottom-up a priori data pruning. A particular strength of PnP is that it is very efficient for all of the following scenarios: (1) Sequential iceberg-cube queries. (2) External memory iceberg-cube queries. (3) Parallel iceberg-cube queries on shared-nothing PC clusters with multiple disks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信