基于自适应神经模糊推理系统的充油电力变压器绝缘寿命损失预测

Hulisani Matsila, P. Bokoro
{"title":"基于自适应神经模糊推理系统的充油电力变压器绝缘寿命损失预测","authors":"Hulisani Matsila, P. Bokoro","doi":"10.1109/isie51582.2022.9831734","DOIUrl":null,"url":null,"abstract":"In this work, the performance accuracy of the Adaptive Neuro-Fuzzy Inference System (ANFIS) in short-term prediction of insulation life loss is evaluated. A 50 Hz, Dyn11, 1000 kVA 11/0.4 kV oil-filled indoor power transformer, feeding an essential facility with mostly nonlinear and seasonally changing loads, is used. The 1735 Fluke power logger unit and the Fluke 59 mini-infrared thermometer are respectively used for total load current and ambient temperature recordings. The ANFIS, such as implemented in MatLab R2019b software package, is invoked to perform 24-hour computation and subsequently predict the status of insulation life for 7 consecutive days based on 24-hour measurement of the load current, ambient temperature and the hottest-spot temperature. Results show a MAPE of 6.51% for this technique in short-term prediction of insulation life loss of an oil-filled power transformer.","PeriodicalId":194172,"journal":{"name":"2022 IEEE 31st International Symposium on Industrial Electronics (ISIE)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insulation Life Loss Prediction of an Oil-Filled Power Transformer Using Adaptive Neuro-Fuzzy Inference System\",\"authors\":\"Hulisani Matsila, P. Bokoro\",\"doi\":\"10.1109/isie51582.2022.9831734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the performance accuracy of the Adaptive Neuro-Fuzzy Inference System (ANFIS) in short-term prediction of insulation life loss is evaluated. A 50 Hz, Dyn11, 1000 kVA 11/0.4 kV oil-filled indoor power transformer, feeding an essential facility with mostly nonlinear and seasonally changing loads, is used. The 1735 Fluke power logger unit and the Fluke 59 mini-infrared thermometer are respectively used for total load current and ambient temperature recordings. The ANFIS, such as implemented in MatLab R2019b software package, is invoked to perform 24-hour computation and subsequently predict the status of insulation life for 7 consecutive days based on 24-hour measurement of the load current, ambient temperature and the hottest-spot temperature. Results show a MAPE of 6.51% for this technique in short-term prediction of insulation life loss of an oil-filled power transformer.\",\"PeriodicalId\":194172,\"journal\":{\"name\":\"2022 IEEE 31st International Symposium on Industrial Electronics (ISIE)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 31st International Symposium on Industrial Electronics (ISIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/isie51582.2022.9831734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 31st International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isie51582.2022.9831734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对自适应神经模糊推理系统(ANFIS)在绝缘寿命损失短期预测中的性能精度进行了评价。使用50hz, Dyn11, 1000 kVA 11/0.4 kV充油室内电力变压器,为主要非线性和季节性变化负荷的基本设施供电。1735 Fluke功率记录仪单元和Fluke 59微型红外温度计分别用于总负载电流和环境温度记录。通过调用MatLab R2019b软件包实现的ANFIS,通过对负载电流、环境温度和热点温度的24小时测量,进行24小时计算,预测连续7天的绝缘寿命状态。结果表明,该方法对充油变压器绝缘寿命短期预测的MAPE为6.51%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insulation Life Loss Prediction of an Oil-Filled Power Transformer Using Adaptive Neuro-Fuzzy Inference System
In this work, the performance accuracy of the Adaptive Neuro-Fuzzy Inference System (ANFIS) in short-term prediction of insulation life loss is evaluated. A 50 Hz, Dyn11, 1000 kVA 11/0.4 kV oil-filled indoor power transformer, feeding an essential facility with mostly nonlinear and seasonally changing loads, is used. The 1735 Fluke power logger unit and the Fluke 59 mini-infrared thermometer are respectively used for total load current and ambient temperature recordings. The ANFIS, such as implemented in MatLab R2019b software package, is invoked to perform 24-hour computation and subsequently predict the status of insulation life for 7 consecutive days based on 24-hour measurement of the load current, ambient temperature and the hottest-spot temperature. Results show a MAPE of 6.51% for this technique in short-term prediction of insulation life loss of an oil-filled power transformer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信