{"title":"无点的三次曲面的自同构","authors":"C. Shramov","doi":"10.1142/s0129167x20500834","DOIUrl":null,"url":null,"abstract":"We classify finite groups acting by birational transformations of a non-trivial Severi--Brauer surface over a field of characteristc zero that are not conjugate to subgroups of the automorphism group. Also, we show that the automorphism group of a smooth cubic surface over a field $K$ of characteristic zero that has no $K$-points is abelian, and find a sharp bound for the Jordan constants of birational automorphism groups of such cubic surfaces.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automorphisms of cubic surfaces without points\",\"authors\":\"C. Shramov\",\"doi\":\"10.1142/s0129167x20500834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify finite groups acting by birational transformations of a non-trivial Severi--Brauer surface over a field of characteristc zero that are not conjugate to subgroups of the automorphism group. Also, we show that the automorphism group of a smooth cubic surface over a field $K$ of characteristic zero that has no $K$-points is abelian, and find a sharp bound for the Jordan constants of birational automorphism groups of such cubic surfaces.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x20500834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129167x20500834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We classify finite groups acting by birational transformations of a non-trivial Severi--Brauer surface over a field of characteristc zero that are not conjugate to subgroups of the automorphism group. Also, we show that the automorphism group of a smooth cubic surface over a field $K$ of characteristic zero that has no $K$-points is abelian, and find a sharp bound for the Jordan constants of birational automorphism groups of such cubic surfaces.