Emmanuel de Salis, Dan Yvan Baumgartner, S. Carrino
{"title":"我们能否在不考虑驾驶员心理生理状态的情况下预测驾驶员注意力分散?:手动驾驶无创分心检测的可行性研究","authors":"Emmanuel de Salis, Dan Yvan Baumgartner, S. Carrino","doi":"10.1145/3349263.3351514","DOIUrl":null,"url":null,"abstract":"Driver distraction is a major issue in manual driving, causing more than 30'000 fatal crashes on US roadways in 2015 only [11]. As such, it is widely studied in order to increase driving safety. Many studies show how to detect driver distraction using Machine Learning algorithms and driver psychophysiological data. In this study, we investigate the trade-off between efficiency and privacy while predicting driver distraction. Specifically, we want to assess the impact on the estimation of the driver state without access to his/her psychophysiological data. Different Machine Learning models (Convolutional Neural Networks, K-NN and Random forest) are implemented to evaluate the validity of the distraction detection with and without access to psychophysiological data. The results show that a Convolutional Neural Network model is still able to detect driver distraction without access to psychophysiological features, with an f1-score of 97.11%, losing only 1.37% in the process.","PeriodicalId":237150,"journal":{"name":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Can we predict driver distraction without driver psychophysiological state?: a feasibility study on noninvasive distraction detection in manual driving\",\"authors\":\"Emmanuel de Salis, Dan Yvan Baumgartner, S. Carrino\",\"doi\":\"10.1145/3349263.3351514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driver distraction is a major issue in manual driving, causing more than 30'000 fatal crashes on US roadways in 2015 only [11]. As such, it is widely studied in order to increase driving safety. Many studies show how to detect driver distraction using Machine Learning algorithms and driver psychophysiological data. In this study, we investigate the trade-off between efficiency and privacy while predicting driver distraction. Specifically, we want to assess the impact on the estimation of the driver state without access to his/her psychophysiological data. Different Machine Learning models (Convolutional Neural Networks, K-NN and Random forest) are implemented to evaluate the validity of the distraction detection with and without access to psychophysiological data. The results show that a Convolutional Neural Network model is still able to detect driver distraction without access to psychophysiological features, with an f1-score of 97.11%, losing only 1.37% in the process.\",\"PeriodicalId\":237150,\"journal\":{\"name\":\"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3349263.3351514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349263.3351514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Can we predict driver distraction without driver psychophysiological state?: a feasibility study on noninvasive distraction detection in manual driving
Driver distraction is a major issue in manual driving, causing more than 30'000 fatal crashes on US roadways in 2015 only [11]. As such, it is widely studied in order to increase driving safety. Many studies show how to detect driver distraction using Machine Learning algorithms and driver psychophysiological data. In this study, we investigate the trade-off between efficiency and privacy while predicting driver distraction. Specifically, we want to assess the impact on the estimation of the driver state without access to his/her psychophysiological data. Different Machine Learning models (Convolutional Neural Networks, K-NN and Random forest) are implemented to evaluate the validity of the distraction detection with and without access to psychophysiological data. The results show that a Convolutional Neural Network model is still able to detect driver distraction without access to psychophysiological features, with an f1-score of 97.11%, losing only 1.37% in the process.