季制芦苇-穆勒码及其最小权基

F. Solov'eva
{"title":"季制芦苇-穆勒码及其最小权基","authors":"F. Solov'eva","doi":"10.1109/REDUNDANCY52534.2021.9606466","DOIUrl":null,"url":null,"abstract":"We prove that the families of quaternary Reed – Muller codes obtained by the BQ-Plotkin construction 2009 have bases of minimum weight codewords. In 2020 we found that the quaternary Reed – Muller codes constructed by the quaternary Plotkin approach have the minimum weight bases. Combining these two constructions we prove that all known quaternary linear Reed – Muller codes have bases of minimum weight codewords. The bases are obtained iteratively.","PeriodicalId":408692,"journal":{"name":"2021 XVII International Symposium \"Problems of Redundancy in Information and Control Systems\" (REDUNDANCY)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quaternary Reed – Muller codes and their minimum weight bases\",\"authors\":\"F. Solov'eva\",\"doi\":\"10.1109/REDUNDANCY52534.2021.9606466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the families of quaternary Reed – Muller codes obtained by the BQ-Plotkin construction 2009 have bases of minimum weight codewords. In 2020 we found that the quaternary Reed – Muller codes constructed by the quaternary Plotkin approach have the minimum weight bases. Combining these two constructions we prove that all known quaternary linear Reed – Muller codes have bases of minimum weight codewords. The bases are obtained iteratively.\",\"PeriodicalId\":408692,\"journal\":{\"name\":\"2021 XVII International Symposium \\\"Problems of Redundancy in Information and Control Systems\\\" (REDUNDANCY)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XVII International Symposium \\\"Problems of Redundancy in Information and Control Systems\\\" (REDUNDANCY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REDUNDANCY52534.2021.9606466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XVII International Symposium \"Problems of Redundancy in Information and Control Systems\" (REDUNDANCY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REDUNDANCY52534.2021.9606466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了2009年BQ-Plotkin构造得到的四元Reed - Muller码族具有最小权码字基。在2020年,我们发现用四元Plotkin方法构造的四元Reed - Muller码具有最小的权基。结合这两种结构,我们证明了所有已知的四元线性Reed - Muller码都有最小权码字基。基是迭代得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quaternary Reed – Muller codes and their minimum weight bases
We prove that the families of quaternary Reed – Muller codes obtained by the BQ-Plotkin construction 2009 have bases of minimum weight codewords. In 2020 we found that the quaternary Reed – Muller codes constructed by the quaternary Plotkin approach have the minimum weight bases. Combining these two constructions we prove that all known quaternary linear Reed – Muller codes have bases of minimum weight codewords. The bases are obtained iteratively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信