基于离散小波变换和粒子群优化算法的GPCR蛋白特征表示

N. Kamal, A. Bakar, S. Zainudin
{"title":"基于离散小波变换和粒子群优化算法的GPCR蛋白特征表示","authors":"N. Kamal, A. Bakar, S. Zainudin","doi":"10.5121/ijma.2022.14501","DOIUrl":null,"url":null,"abstract":"Features play an important role in representing classes in the hierarchy structure, and using unsuitable features will affect classification performance. The discrete wavelet transform (DWT) approach provides the ability to create the appropriate features to represent data. DWT can produce global and local features using different wavelet families and decomposition levels. These two parameters are essential to obtain a suitable representation for classes in the hierarchy structure. This study proposes using a particle swarm optimisation (PSO) algorithm to select the suitable wavelet family and decomposition level for G-protein coupled receptor (GPCR) hierarchical class representation. The results indicate that the PSO algorithm mostly selects Biorthogonal wavelets and decomposition level 2 to represent GPCR protein. Concerning the performance, the proposed method achieved an accuracy of 97.9%, 85.9%, and 77.5% at the family, subfamily, and sub-subfamily levels, respectively.","PeriodicalId":133327,"journal":{"name":"The International journal of Multimedia & Its Applications","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPCR Protein Feature Representation using Discrete Wavelet Transform and Particle Swarm Optimisation Algorithm\",\"authors\":\"N. Kamal, A. Bakar, S. Zainudin\",\"doi\":\"10.5121/ijma.2022.14501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Features play an important role in representing classes in the hierarchy structure, and using unsuitable features will affect classification performance. The discrete wavelet transform (DWT) approach provides the ability to create the appropriate features to represent data. DWT can produce global and local features using different wavelet families and decomposition levels. These two parameters are essential to obtain a suitable representation for classes in the hierarchy structure. This study proposes using a particle swarm optimisation (PSO) algorithm to select the suitable wavelet family and decomposition level for G-protein coupled receptor (GPCR) hierarchical class representation. The results indicate that the PSO algorithm mostly selects Biorthogonal wavelets and decomposition level 2 to represent GPCR protein. Concerning the performance, the proposed method achieved an accuracy of 97.9%, 85.9%, and 77.5% at the family, subfamily, and sub-subfamily levels, respectively.\",\"PeriodicalId\":133327,\"journal\":{\"name\":\"The International journal of Multimedia & Its Applications\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International journal of Multimedia & Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijma.2022.14501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of Multimedia & Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijma.2022.14501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特征在表示层次结构中的类方面起着重要的作用,使用不合适的特征会影响分类性能。离散小波变换(DWT)方法提供了创建适当特征来表示数据的能力。小波变换可以利用不同的小波族和分解层次产生全局和局部特征。这两个参数对于在层次结构中获得合适的类表示是必不可少的。本文提出了一种基于粒子群优化(PSO)算法的g蛋白偶联受体(GPCR)分层类表示的小波族和分解水平选择方法。结果表明,粒子群算法主要选择双正交小波和分解水平2来表示GPCR蛋白。在性能方面,该方法在家族、亚家族和亚亚家族水平上的准确率分别为97.9%、85.9%和77.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPCR Protein Feature Representation using Discrete Wavelet Transform and Particle Swarm Optimisation Algorithm
Features play an important role in representing classes in the hierarchy structure, and using unsuitable features will affect classification performance. The discrete wavelet transform (DWT) approach provides the ability to create the appropriate features to represent data. DWT can produce global and local features using different wavelet families and decomposition levels. These two parameters are essential to obtain a suitable representation for classes in the hierarchy structure. This study proposes using a particle swarm optimisation (PSO) algorithm to select the suitable wavelet family and decomposition level for G-protein coupled receptor (GPCR) hierarchical class representation. The results indicate that the PSO algorithm mostly selects Biorthogonal wavelets and decomposition level 2 to represent GPCR protein. Concerning the performance, the proposed method achieved an accuracy of 97.9%, 85.9%, and 77.5% at the family, subfamily, and sub-subfamily levels, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信