{"title":"基于簇的保真度保护DSDV协议免受黑洞攻击","authors":"S. Boujaada, Y. Qaraai, S. Agoujil","doi":"10.5121/ijans.2019.9401","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce and discuss an approach that will be used to secure the DSDV routing protocol in an ad-hoc network. Due to mobility and absence of infrastructure, nodes are more vulnerable to several malicious attacks. The secure routing is essential to transmit packets from source to the destination. Our approach consists to model and manage fidelity concept in an ad-hoc clustering architecture. Clustering makes it possible to group the mobile nodes and to send data simultaneously to the each group. Our security model thus aims to integrate mechanisms against black hole attacks, forcing cooperation between nodes and detecting failing behaviors. The nodes present in the clusters will work more efficiently and the message passing within the nodes will also get more authenticated from the cluster heads. The simulation of our proposed algorithm is carried out using NS2 network simulator by evaluating some network performances such as average delay, throughput of communication and packets loss.","PeriodicalId":130187,"journal":{"name":"International Journal on AdHoc Networking Systems","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster Based Fidelity to Secure DSDV Protocol Against Black Hole Attacks\",\"authors\":\"S. Boujaada, Y. Qaraai, S. Agoujil\",\"doi\":\"10.5121/ijans.2019.9401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce and discuss an approach that will be used to secure the DSDV routing protocol in an ad-hoc network. Due to mobility and absence of infrastructure, nodes are more vulnerable to several malicious attacks. The secure routing is essential to transmit packets from source to the destination. Our approach consists to model and manage fidelity concept in an ad-hoc clustering architecture. Clustering makes it possible to group the mobile nodes and to send data simultaneously to the each group. Our security model thus aims to integrate mechanisms against black hole attacks, forcing cooperation between nodes and detecting failing behaviors. The nodes present in the clusters will work more efficiently and the message passing within the nodes will also get more authenticated from the cluster heads. The simulation of our proposed algorithm is carried out using NS2 network simulator by evaluating some network performances such as average delay, throughput of communication and packets loss.\",\"PeriodicalId\":130187,\"journal\":{\"name\":\"International Journal on AdHoc Networking Systems\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on AdHoc Networking Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijans.2019.9401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on AdHoc Networking Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijans.2019.9401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cluster Based Fidelity to Secure DSDV Protocol Against Black Hole Attacks
In this paper, we introduce and discuss an approach that will be used to secure the DSDV routing protocol in an ad-hoc network. Due to mobility and absence of infrastructure, nodes are more vulnerable to several malicious attacks. The secure routing is essential to transmit packets from source to the destination. Our approach consists to model and manage fidelity concept in an ad-hoc clustering architecture. Clustering makes it possible to group the mobile nodes and to send data simultaneously to the each group. Our security model thus aims to integrate mechanisms against black hole attacks, forcing cooperation between nodes and detecting failing behaviors. The nodes present in the clusters will work more efficiently and the message passing within the nodes will also get more authenticated from the cluster heads. The simulation of our proposed algorithm is carried out using NS2 network simulator by evaluating some network performances such as average delay, throughput of communication and packets loss.